Atnaujinkite slapukų nuostatas

Grobner Bases in Commutative Algebra [Kietas viršelis]

  • Formatas: Hardback, 164 pages, weight: 477 g
  • Serija: Graduate Studies in Mathematics
  • Išleidimo metai: 30-Dec-2011
  • Leidėjas: American Mathematical Society
  • ISBN-10: 0821872877
  • ISBN-13: 9780821872871
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 164 pages, weight: 477 g
  • Serija: Graduate Studies in Mathematics
  • Išleidimo metai: 30-Dec-2011
  • Leidėjas: American Mathematical Society
  • ISBN-10: 0821872877
  • ISBN-13: 9780821872871
Kitos knygos pagal šią temą:
This book provides a concise yet comprehensive and self-contained introduction to Grobner basis theory and its applications to various current research topics in commutative algebra. It especially aims to help young researchers become acquainted with fundamental tools and techniques related to Grobner bases which are used in commutative algebra and to arouse their interest in exploring further topics such as toric rings, Koszul and Rees algebras, determinantal ideal theory, binomial edge ideals, and their applications to statistics. The book can be used for graduate courses and self-study. More than 100 problems will help the readers to better understand the main theoretical results and will inspire them to further investigate the topics studied in this book.
Preface ix
Chapter 1 Polynomial rings and ideals
1(14)
§1.1 Polynomial rings
1(5)
1.1.1 Definition of the polynomial ring
1(4)
1.1.2 Some basic properties of polynomial rings
5(1)
§1.2 Ideals
6(9)
1.2.1 Operations on ideals
6(1)
1.2.2 Residue class rings
7(1)
1.2.3 Monomial ideals and Dickson's lemma
8(2)
1.2.4 Operations on monomial ideals
10(2)
Problems
12(3)
Chapter 2 Grobner bases
15(18)
§2.1 Monomial orders
15(3)
2.1.1 Examples and basic properties of monomial orders
15(2)
2.1.2 Construction of monomial orders
17(1)
§2.2 Initial ideals and Grobner bases
18(4)
2.2.1 The basic definitions
18(2)
2.2.2 Macaulay's theorem
20(1)
2.2.3 Hilbert's basis theorem
21(1)
§2.3 The division algorithm
22(3)
§2.4 Buchberger's criterion
25(3)
§2.5 Buchberger's algorithm
28(1)
§2.6 Reduced Grobner bases
29(4)
Problems
30(3)
Chapter 3 First applications
33(18)
§3.1 Elimination of variables
33(1)
3.1.1 Elimination orders
33(1)
3.1.2 The Elimination Theorem
34(1)
§3.2 Applications to operations on ideals
34(8)
3.2.1 Intersection of ideals
34(1)
3.2.2 Ideal quotient
35(1)
3.2.3 Saturation and radical membership
36(1)
3.2.4 K -algebra homomorphisms
37(3)
3.2.5 Homogenization
40(2)
§3.3 Zero dimensional ideals
42(4)
§3.4 Ideals of initial forms
46(5)
Problems
48(3)
Chapter 4 Grobner bases for modules
51(32)
§4.1 Modules
51(2)
§4.2 Monomial orders and initial modules
53(3)
§4.3 The division algorithm and Buchberger's criterion and algorithm for modules
56(2)
§4.4 Syzygies
58(25)
4.4.1 How to compute syzygy modules
58(5)
4.4.2 Systems of linear equations over the polynomial ring
63(3)
4.4.3 Schreyer's theorem
66(2)
4.4.4 Graded rings and modules
68(2)
4.4.5 Graded free resolutions
70(3)
4.4.6 Numerical data arising from graded resolutions
73(3)
4.4.7 Zn-graded modules
76(4)
Problems
80(3)
Chapter 5 Grobner bases of toric ideals
83(16)
§5.1 Semigroup rings and toric ideals
83(4)
§5.2 Grobner bases of toric ideals
87(1)
§5.3 Simplicial complexes and squarefree monomial ideals
88(3)
§5.4 Normal semigroup rings
91(3)
§5.5 Edge rings associated with bipartite graphs
94(5)
Problems
97(2)
Chapter 6 Selected applications in commutative algebra and combinatorics
99(58)
§6.1 Koszul algebras
99(6)
§6.2 Sortable sets of monomials
105(5)
§6.3 Generalized Hibi rings
110(3)
§6.4 Grobner bases for Rees rings
113(4)
6.4.1 The l-exchange property
113(2)
6.4.2 The Rees ring of generalized Hibi ideals
115(2)
§6.5 Determinantal ideals
117(10)
6.5.1 Determinantal ideals and their initial ideals
117(4)
6.5.2 The initial complex of a determinantal ideal
121(6)
§6.6 Sagbi bases and the coordinate ring of Grassmannians
127(8)
6.6.1 Sagbi bases
127(3)
6.6.2 The coordinate ring of Grassmannians
130(5)
§6.7 Binomial edge ideals
135(5)
§6.8 Connectedness of contingency tables
140(17)
6.8.1 Contingency tables and the X2-statistics
140(1)
6.8.2 Random walks
141(3)
6.8.3 Contingency tables of shape 2 x n
144(8)
Problems
152(5)
Bibliography 157(4)
Index 161
Viviana Ene, Ovidius University, Constanta, Romania

Jürgen Herzog, Universität Duisburg-Essen, Essen, Germany