Atnaujinkite slapukų nuostatas

El. knyga: Grobner Cover

Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book is divided into two parts, one theoretical and one focusing on applications, and offers a complete description of the Canonical Gröbner Cover, the most accurate algebraic method for discussing parametric polynomial systems. It also includes applications to the Automatic Deduction of Geometric Theorems, Loci Computation and Envelopes. 

The theoretical part is a self-contained exposition on the theory of Parametric Gröbner Systems and Bases. It begins with Weispfenning’s introduction of Comprehensive Gröbner Systems (CGS) in 1992, and provides a complete description of the Gröbner Cover (GC), which includes a canonical discussion of a set of parametric polynomial equations developed by Michael Wibmer and the author.  

In turn, the application part selects three problems for which the Gröbner Cover offers valuable new perspectives. The automatic deduction of geometric theorems (ADGT) becomes fully automatic and straightforward using GC, representing a major improvement on all previous methods. In terms of loci and envelope computation, GC makes it possible to introduce a taxonomy of the components and automatically compute it. The book also generalizes the definition of the envelope of a family of hypersurfaces, and provides algorithms for its computation, as well as for discussing how to determine the real envelope. 

All the algorithms described here have also been included in the software library “grobcov.lib” implemented in Singular by the author, and serve as a User Manual for it.

Recenzijos

This book is indispensable for any researcher in parametrically defined algebraic varieties. (Franz Winkler, Mathematical Reviews, January, 2020)

1 Preliminaries
1(14)
1.1 Basic Notions for Multivariate Polynomials and Notations
1(3)
1.2 Ordinary Grobner Bases
4(4)
1.3 Characterization of the Solutions of a Polynomial System
8(2)
1.4 Parametric Systems and Example of the Grobner Cover
10(2)
1.5 Remark: Triangular Sets
12(3)
Part I Theory
2 Constructible Sets
15(26)
2.1 Introduction
15(1)
2.2 Locally Closed Sets
16(4)
2.3 Canonical Representation of Constructible Sets
20(6)
2.4 Algorithms
26(6)
2.5 Examples
32(9)
3 Comprehensive Grobner Systems and Bases
41(26)
3.1 Introduction
41(1)
3.2 Parametric Polynomial Systems and Specializations
42(11)
3.3 Comprehensive Grobner Systems
53(2)
3.4 Suzuki-Sato Algorithm
55(1)
3.5 Kapur-Sun-Wang Proof of the Existence of a CGS
56(2)
3.6 Kapur-Sun-Wang Algorithm for Computing a CGS
58(2)
3.7 Examples
60(7)
4 I-Regular Functions on a Locally Closed Set
67(12)
4.1 Regular and I-Regular Functions on a Locally Closed Set
67(2)
4.2 Representations of Regular and I-Regular Functions
69(10)
5 The Canonical Grobner Cover
79(20)
5.1 Introduction
79(1)
5.2 Canonical Partition of the Parameter Space
80(8)
5.3 Algorithms for Computing the Canonical Grobner Cover
88(2)
5.4 The Singular Library and the grobcov Command
90(9)
Part II Applications
6 Automatic Deduction of Geometric Theorems
99(26)
6.1 Steiner-Lehmus Theorem
100(10)
6.2 Automatic Discovery Using the Grobner Cover
110(3)
6.3 Orthic Triangle
113(6)
6.4 Automatic Demonstration of Geometric Theorems
119(6)
7 Geometric Loci
125(56)
7.1 Elementary Loci
125(1)
7.2 Locus of a Geometric Construction
126(5)
7.3 Taxonomy of Loci
131(6)
7.4 Algorithm LOCUS2
137(16)
7.5 LOCUS Algorithm
153(16)
7.6 Some Other Examples
169(8)
7.7 Web Implementation in GeoGebra
177(3)
7.8 Exercises
180(1)
8 Geometric Envelopes
181(72)
8.1 Envelopes
181(1)
8.2 Definitions and Theorems
182(3)
8.3 Algorithms
185(2)
8.4 Simple Examples
187(24)
8.5 New Examples
211(17)
8.6 Open Problems
228(17)
8.7 Loci with Two Movers
245(6)
8.8 Exercises
251(2)
A The BuildTree Algorithm
253(16)
A.1 R-Representation of Special Locally Closed Sets
253(2)
A.2 Algorithms for Splitting the Discussion
255(4)
A.3 BuildTree Algorithm
259(3)
A.4 Comparison of BuildTree and Kapur-Sun-Wang Algorithms
262(4)
A.5 Conclusions
266(3)
Bibliography 269(4)
Index 273