Atnaujinkite slapukų nuostatas

El. knyga: Ground Motion Seismology

  • Formatas: EPUB+DRM
  • Serija: Advances in Geological Science
  • Išleidimo metai: 04-Jan-2021
  • Leidėjas: Springer Verlag, Singapore
  • Kalba: eng
  • ISBN-13: 9789811585708
Kitos knygos pagal šią temą:
  • Formatas: EPUB+DRM
  • Serija: Advances in Geological Science
  • Išleidimo metai: 04-Jan-2021
  • Leidėjas: Springer Verlag, Singapore
  • Kalba: eng
  • ISBN-13: 9789811585708
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book explains the physics behind seismic ground motions and seismic waves to graduate and upper undergraduate students as well as to professionals. Both seismic ground motions and seismic waves are terms for “shaking” due to earthquakes, but it is common that shaking in the near-field of an earthquake source is called seismic ground motion and in the far-field is called seismic waves. Seismic ground motion is often described by the tensor formula based on the representation theorem, but in this book explicit formulation is emphasized beginning with Augustus Edward Hough Love (1863 – 1940). The book also explains in depth the equations and methods used for analysis and computation of shaking close to an earthquake source. In addition, it provides in detail information and knowledge related to teleseismic body waves, which are frequently used in the analysis of the source of an earthquake.

1 Earthquakes and Ground Motion
1(30)
1.1 Definition of Ground Motion
1(2)
1.2 Ground Motion and Seismic Waves
3(20)
1.2.1 Elastic Strain
3(3)
1.2.2 Balance of Stress
6(1)
1.2.3 Constitutive Law and Equation of Motion
7(5)
1.2.4 Wave Equation and Seismic Wave
12(3)
1.2.5 Wavefronts and Rays
15(3)
1.2.6 Anelasticity
18(5)
1.3 Principles of Ground Motion
23(8)
1.3.1 Principle of Superposition
23(1)
1.3.2 Reciprocity Theorem
23(4)
1.3.3 Representation Theorem
27(2)
Problems
29(1)
References
30(1)
2 The Effect of Earthquake Source
31(88)
2.1 Representation of Earthquake Source
31(27)
2.1.1 Discovery of Earthquake Source
31(4)
2.1.2 Representation of Source Fault
35(9)
2.1.3 Ground Motion by Point Force
44(5)
2.1.4 Ground Motion by Point Source
49(4)
2.1.5 Potential Representation
53(5)
2.2 Cylindrical Wave Expansion
58(16)
2.2.1 Vertical Strike Slip Fault
58(3)
2.2.2 Inclined Strike Slip Fault
61(5)
2.2.3 Vertical Dip Slip Fault
66(3)
2.2.4 Inclined Dip Slip Fault
69(4)
2.2.5 Extension to Arbitrary Fault Slip
73(1)
2.3 Analysis of the Earthquake Source
74(45)
2.3.1 Hypocenter Determination
74(7)
2.3.2 Radiation Pattern and Fault Plane Solution
81(4)
2.3.3 Moment Tensor
85(4)
2.3.4 CMT Inversion
89(3)
2.3.5 Ground Motion from a Finite Fault
92(8)
2.3.6 Source Processes and Source Inversion
100(5)
2.3.7 Stress Drop and Slip Rate Function
105(5)
2.3.8 Directivity Effect
110(4)
Problems
114(1)
References
115(4)
3 The Effect of Propagation
119(144)
3.1 Propagation in 1-D Media
119(72)
3.1.1 1-D Velocity Structure
119(5)
3.1.2 SHWave
124(3)
3.1.3 P Wave and SV Wave
127(5)
3.1.4 Haskell Matrix
132(4)
3.1.5 Reflection/Transmission Matrix I
136(7)
3.1.6 Reflection/Transmission Matrix II
143(4)
3.1.7 Wavenumber Integration (Approximate)
147(10)
3.1.8 Wavenumber Integration (Numerical)
157(5)
3.1.9 Surface Wave (Love Wave)
162(8)
3.1.10 Surface Wave (Rayleigh Wave)
170(7)
3.1.11 Teleseismic Body Wave
177(8)
3.1.12 Crustal Deformation
185(6)
3.2 Propagation in 3-D Velocity Structures
191(39)
3.2.1 3-D Velocity Structure
191(2)
3.2.2 Ray Theory
193(11)
3.2.3 Ray Tracing
204(8)
3.2.4 Finite Difference Method
212(5)
3.2.5 Finite Element Method
217(7)
3.2.6 Aki-Larner Method
224(6)
3.3 Analysis of Propagation
230(33)
3.3.1 Long-Period Ground Motion
230(3)
3.3.2 Microtremors
233(6)
3.3.3 Seismic Interferometry
239(9)
3.3.4 Seismic Tomography
248(8)
Problems
256(1)
References
257(6)
4 Observation and Processing
263(44)
4.1 Seismographs
263(11)
4.1.1 Instrumentation of Seismographs
263(4)
4.1.2 Strong Motion Seismographs
267(2)
4.1.3 Electromagnetic Seismographs
269(2)
4.1.4 Servo Mechanisms
271(3)
4.2 Spectral Processing
274(11)
4.2.1 A/D Conversion
274(2)
4.2.2 Fourier Transform
276(1)
4.2.3 Discrete Fourier Transform
277(5)
4.2.4 FFT
282(3)
4.3 Filtering
285(8)
4.3.1 Filters and Windows
285(1)
4.3.2 Low-Pass Filters
286(4)
4.3.3 High-Pass and Band-Pass Filters
290(3)
4.4 Least-Squares Method
293(14)
4.4.1 Computation in Least-Squares Method
293(6)
4.4.2 Constraints in Least-Squares Method
299(4)
Problems
303(1)
References
304(3)
Appendix
307(16)
A.1 Magnitude
307(7)
A.1.1 Definition of Magnitude
307(3)
A.1.2 Recent Magnitudes
310(4)
A.2 Seismic Intensity
314(9)
A.2.1 Characteristics of Seismic Intensity
314(2)
A.2.2 Sensory Seismic Intensity
316(3)
A.2.3 Instrumental Seismic Intensity
319(4)
References 323(2)
Index 325
Kazuki Koketsu is a professor of applied seismology at the Earthquake Research Institute, The University of Tokyo, where he received his M.Sc. and Ph.D. in geophysics. He has held the positions of research associate and associate professor at the Earthquake Research Institute, The University of Tokyo, and visiting fellow at the Research School of Earth Sciences of the Australian National University. His selected papers include Koketsu, K. and M. Kikuchi, Propagation of seismic ground motion in the Kanto basin, Japan, Science 288, 12371239 (2000); Yokota, Y. and K. Koketsu, A very long-term transient event preceding the 2011 Tohoku earthquake, Nature Communications 6, doi:10.1038/ncomms6934 (2015); and Koketsu, K. et al., Widespread ground motion distribution caused by rupture directivity during the 2015 Gorkha, Nepal, earthquake, Scientific Reports 6, doi:10.1038/srep28536 (2016).





He is a member of the Subcommittee for Evaluations of Strong Ground Motions, Ministry of Education, Culture, Sports, Science and Technology of Japan; the Committee of Earthquake Insurance, Ministry of Finance of Japan; a representative of the Seismological Society of Japan; and the recipient of the 2016 Paper Award of the Japan Association for Earthquake Engineering. He was an associate editor of the Journal of Seismology (Springer) between 2005 and 2012.