Atnaujinkite slapukų nuostatas

El. knyga: Groundwater Engineering

  • Formatas: PDF+DRM
  • Serija: Springer Natural Hazards
  • Išleidimo metai: 06-Sep-2016
  • Leidėjas: Springer Verlag, Singapore
  • Kalba: eng
  • ISBN-13: 9789811006692
  • Formatas: PDF+DRM
  • Serija: Springer Natural Hazards
  • Išleidimo metai: 06-Sep-2016
  • Leidėjas: Springer Verlag, Singapore
  • Kalba: eng
  • ISBN-13: 9789811006692

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Integrating information from several areas of engineering geology, hydrogeology, geotechnical engineering, this book addresses the general field of groundwater from an engineering perspective. It covers geological engineering as well as hydrogeological and environmental geological problems caused by groundwater engineering. It includes 10 chapters, i.e., basic groundwater theory, parameter calculation in hydrogeology, prevention of geological problem caused by groundwater, construction dewatering, wellpoint dewatering methods, dewatering wells and drilling, groundwater dewatering in foundation-pit engineering, groundwater engineering in bedrock areas, numerical simulation in groundwater engineering, groundwater corrosion on concrete and steel. Based on up-to-date literature, it describes recent developments and presents several case studies with examples and problems. It is an essential reference source for industrial and academic researchers working in the groundwater field and can also serve as lecture-based course material providing fundamental information and practical tools for both senior undergraduate and postgraduate students in fields of geology engineering, hydrogeology, geotechnical engineering or to conduct related research.

1 Groundwater 1(34)
1.1 Basic Concepts of Groundwater
1(8)
1.1.1 Geological Occurrence of Groundwater
1(3)
1.1.2 Hydraulic Properties of Earth Materials and Groundwater
4(4)
1.1.3 Aquifers
8(1)
1.2 Types of Groundwater
9(4)
1.2.1 Buried Conditions
9(3)
1.2.2 Aquifer Characteristic
12(1)
1.3 Groundwater Movement
13(21)
1.3.1 Basic Concepts
13(7)
1.3.2 Linear Seepage Principles
20(9)
1.3.3 Nonlinear Seepage Principles
29(1)
1.3.4 Flow Nets
30(4)
1.4 Exercises
34(1)
2 Hydrogeological Parameters Calculation 35(78)
2.1 Hydrogeological Tests
35(26)
2.1.1 Pumping Test
36(13)
2.1.2 Water Pressure Test
49(7)
2.1.3 Water Injection Test
56(1)
2.1.4 Infiltration Test
57(4)
2.2 Measurement of Groundwater Table, Flow Direction and Seepage Velocity
61(3)
2.2.1 Measurement of Groundwater Table
61(1)
2.2.2 Measurement of Groundwater Flow Direction
61(1)
2.2.3 Measurement of Seepage Velocity
62(2)
2.3 Capillary Rise Height Determination
64(3)
2.3.1 Direct Observation Method
64(1)
2.3.2 Water Content Distribution Curve Method
64(3)
2.4 Pore Water Pressure Determination
67(2)
2.4.1 Pore Water Pressure Gauge and Measurement Methods
67(1)
2.4.2 Calculation Formulas
67(2)
2.5 Hydrogeological Parameters Calculation in Steady Flow Pumping Test
69(14)
2.5.1 Calculation of Hydraulic Conductivity
69(4)
2.5.2 Calculation of Radius of Influence
73(7)
2.5.3 Case Study
80(3)
2.6 Hydrogeological Parameters Calculation in Unsteady Flow Pumping Test
83(12)
2.6.1 Transmissibility, Storage Coefficient, and Pressure Transitivity Coefficient Calculation for Confined Aquifer
83(6)
2.6.2 Transmissibility, Storage Coefficient, Leakage Coefficient, and Leakage Factor Calculation for Leaky Aquifers
89(1)
2.6.3 Specific Yield, Storage Coefficient, Hydraulic Conductivity and Transmissibility Calculation of Unconfined Aquifer
90(5)
2.7 Other Methods for Hydrogeological Parameters Calculation
95(14)
2.7.1 Transmissibility and Well Loss Calculation
95(3)
2.7.2 Calculation of Transmissibility Coefficient and Water Storage Coefficient by Sensitivity Analysis Method Based on Pumping Test Data
98(4)
2.7.3 Hydrogeological Parameter Optimization Based on Numerical Method and Optimization Method Coupling Model
102(7)
2.8 Case Study
109(2)
2.9 Exercises
111(2)
3 Groundwater Engineering Problem and Prevention 113(52)
3.1 Adverse Actions of Groundwater
113(1)
3.1.1 Suffosion
113(1)
3.1.2 Pore-Water Pressure
113(1)
3.1.3 Seepage Flow
114(1)
3.1.4 Uplift Effect of Groundwater
114(1)
3.2 Suffosion
114(2)
3.2.1 Types of Suffosion
114(1)
3.2.2 Conditions of Suffosion
115(1)
3.2.3 Prevention of Suffosion
115(1)
3.3 Piping and Prevention
116(3)
3.3.1 Piping
116(1)
3.3.2 Conditions of Piping
117(1)
3.3.3 Prevention of Piping
117(1)
3.3.4 Case Study
118(1)
3.4 Quicksand and Prevention
119(9)
3.4.1 Quicksand
119(1)
3.4.2 Causes of Quicksand
120(1)
3.4.3 Conditions of Quicksand
121(1)
3.4.4 Determination of Quicksand
121(2)
3.4.5 Quicksand in Foundation Pit
123(2)
3.4.6 Quicksand in the Caisson
125(1)
3.4.7 The Prevention and Treatment of Quicksand
126(2)
3.5 Liquefaction of Sands and Relevant Preventions
128(16)
3.5.1 Liquefaction
128(2)
3.5.2 The Factors Affecting Liquefaction
130(5)
3.5.3 Evaluation of Liquefaction Potential
135(8)
3.5.4 Anti-Liquefaction Measurement
143(1)
3.6 Pore-Water Pressure Problems
144(6)
3.6.1 The Influence of Pore-Water Pressure on Shear Strength
144(3)
3.6.2 Instantaneous and Long-Term Stability in Foundation Pit in Saturated Clay
147(3)
3.7 Seepage
150(5)
3.7.1 The Stability of Foundation Pit with Retaining Wall Under Seepage Condition
150(4)
3.7.2 The Stability of Slope Under Seepage Condition
154(1)
3.8 Piping and Soil Displacement in Foundation Pit Bottom
155(9)
3.8.1 Piping in the Foundation Pit
155(2)
3.8.2 Soil Displacement
157(1)
3.8.3 The Foundation Pit Bottom Stability Encountering Confined Water Pressure
158(2)
3.8.4 The Measurements of Foundation Pit Piping
160(4)
3.9 Exercises
164(1)
4 Construction Drainage 165(18)
4.1 Summary
165(3)
4.2 Open Pumping Methods
168(6)
4.2.1 Open Ditches and Sump Pumps
168(2)
4.2.2 Multilayer Open Pumping from Ditches and Sumps
170(1)
4.2.3 Deep Ditches Pumping
171(1)
4.2.4 Combined Pumping
172(1)
4.2.5 Dewatering by Infrastructure
173(1)
4.2.6 Open Pumping in Sheet Pile Supporting System
173(1)
4.3 Calculation on Open Pumping Amount
174(6)
4.3.1 Formulas
174(5)
4.3.2 Empirical Method
179(1)
4.4 The Common Section of the Ditches in Foundation Pit
180(1)
4.5 The Calculation of the Power of Pumps in Requirement
180(1)
4.6 The Performance of Common Pumps
180(1)
4.7 Case Study
181(1)
4.8 Exercises
182(1)
5 Wellpoint Dewatering in Engineering Groundwater 183(80)
5.1 Light Wellpoint Dewatering
186(25)
5.1.1 Range of Application
186(1)
5.1.2 Major Equipment
186(3)
5.1.3 Wellpoint Arrangement
189(4)
5.1.4 Wellpoint Construction Processes
193(4)
5.1.5 Parameter Calculation
197(12)
5.1.6 Choice of Filter Screen and Sand Pack
209(2)
5.2 Ejector Wellpoint
211(7)
5.2.1 Scope of Application
211(2)
5.2.2 Major Equipment and Working Principles
213(2)
5.2.3 Design of the Pumping Device Structure
215(3)
5.2.4 Layout of Ejector Wellpoint and Attention for Construction
218(1)
5.3 Tube Wellpoint
218(3)
5.3.1 Scope of Application
218(1)
5.3.2 Major Equipment and Working Principles
219(1)
5.3.3 Construction Method
220(1)
5.4 Electroosmosis Wellpoint
221(2)
5.4.1 Scope of Application
221(1)
5.4.2 Major Equipment and Working Principles
221(1)
5.4.3 Key Points and Attention of Construction
222(1)
5.5 Recharge Wellpoint
223(1)
5.5.1 Working Principles
223(1)
5.5.2 Key Points and Attentions of Construction
223(1)
5.6 Monitoring of Wellpoint Dewatering
224(2)
5.6.1 Flow Observation
224(1)
5.6.2 Water Table Observation
225(1)
5.6.3 Pore Water Pressure Measurement
225(1)
5.6.4 Total Settlement and Layered Settlement Observation
225(1)
5.6.5 Earth Pressure Measurement
225(1)
5.7 Design Cases of Dewatering Projects
226(8)
5.7.1 Ejector Wellpoint Case
226(3)
5.7.2 Tube Wellpoint Case
229(5)
5.8 Common Issues of Wellpoint Dewatering Methods and Their Solutions
234(6)
5.8.1 Light Wellpoint
234(1)
5.8.2 Ejector Wellpoint
235(3)
5.8.3 Tube Wellpoint
238(2)
5.9 Impact of Wellpoint Dewatering on the Environment and the Prevention
240(19)
5.9.1 Ground Deformation Near a Dewatering Wellpoint
240(3)
5.9.2 Mechanism of Settlement Caused by Dewatering
243(4)
5.9.3 Impact of Changes in Groundwater Level on Soil Deformation
247(1)
5.9.4 Differences Between Load Consolidation and Osmotic Consolidation
248(1)
5.9.5 Relationship Between Settlement Rate and Groundwater Pressure
249(2)
5.9.6 Calculation of Wellpoint Dewatering Influence Range and Ground Settlement
251(4)
5.9.7 Precautions of Adversely Affects on Environment Caused by Wellpoint Dewatering
255(4)
5.10 Case Study
259(1)
5.11 Exercises
260(3)
6 Dewatering Well and Requirements of Drilling Completion 263(20)
6.1 Structural Design of Dewatering Well
263(8)
6.1.1 Determination of Well Pipe, Depth and Diameter of Drilling
263(2)
6.1.2 Design of Filter in Well Pipe
265(6)
6.2 Technical Requirements of Dewatering Well Completion
271(1)
6.2.1 Water Sealing Requirement for Drilling
271(1)
6.2.2 Demands of Drilling Flushing Fluid
271(1)
6.2.3 Requirements of Drilling Inclination
271(1)
6.3 Well Washing
271(8)
6.3.1 Mechanical Methods for Well Washing
272(4)
6.3.2 Chemical Methods for Well Washing
276(3)
6.4 Case Study
279(2)
6.5 Exercises
281(2)
7 Dewatering Types in Foundation Pit 283(28)
7.1 Types and Effect of Dewatering in Foundation Pit
283(1)
7.1.1 Effects of Dewatering in Foundation Pit Construction
283(1)
7.1.2 Different Types of Dewatering in Foundation Pit Construction
284(1)
7.2 The Seepage Properties of Dewatering in Foundation Pit
284(5)
7.2.1 Water-Proof Curtain
284(4)
7.2.2 Length of Filter
288(1)
7.2.3 Vertical Hydraulic Conductivity of Aquifer
288(1)
7.3 The Classification and Characteristics of Dewatering in Foundation Pit
289(3)
7.3.1 The First Class
289(1)
7.3.2 The Second Class
290(1)
7.3.3 The Third Class
291(1)
7.3.4 The Fourth Class
292(1)
7.4 Dewatering Design of Foundation Pit Engineering
292(4)
7.4.1 Design for the First Class Dewatering
292(1)
7.4.2 Design for the Second Class Dewatering
293(1)
7.4.3 Design for the Third Class Dewatering
294(1)
7.4.4 Design for the Fourth Class Dewatering
295(1)
7.5 Case Study
296(14)
7.5.1 Case 1-The Second Class Foundation Dewatering Engineering of Small Area and Large Drawdown
296(5)
7.5.2 Case 2-The Third Class Foundation Dewatering Engineering of Large Drawdown and Double Aquifers
301(9)
7.6 Exercises
310(1)
8 Engineering Groundwater of Bedrock Area 311(46)
8.1 Concepts and Classifications of Groundwater in Bedrock Area
311(5)
8.1.1 Concept of the Bedrock Groundwater
311(1)
8.1.2 Classification of the Bedrock Groundwater
311(5)
8.2 Forming Conditions, Characteristics, and Storage Regularities of the Bedrock Fissure Water
316(4)
8.2.1 Forming Conditions of the Bedrock Fissure Water
316(1)
8.2.2 Characteristics of the Bedrock Fissure Water
317(1)
8.2.3 Occurrence Regularity of the Bedrock Fissure Water
317(1)
8.2.4 Flow Regularity of the Bedrock Fissure Water
318(2)
8.3 Groundwater Seepage Model of Fractured Rock Mass
320(7)
8.3.1 Dual Model of Fracture-Pore
320(3)
8.3.2 Non-Dual-Medium Model
323(4)
8.4 Three-Dimensional Numerical Model for Bedrock Fissure Water
327(2)
8.4.1 Equivalent Three-Dimensional Model
328(1)
8.4.2 One-Dimensional Model
328(1)
8.4.3 Water Catchment Corridor Model
329(1)
8.5 Project Types and Instances of Bedrock Fissure Water
329(27)
8.5.1 Groundwater of the Rock Slope Engineering
329(20)
8.5.2 Groundwater of the Tunnel Project
349(7)
8.6 Exercises
356(1)
9 Numerical Simulation of Engineering Groundwater 357(24)
9.1 Basic Principle
357(6)
9.1.1 Finite Difference Method
357(3)
9.1.2 Finite Element Method
360(3)
9.1.3 Boundary Element Method
363(1)
9.2 Numerical Simulation of Foundation Pit Dewatering
363(17)
9.2.1 Analysis of Prototype
364(4)
9.2.2 Three-Dimensional Numerical Modeling of FDM
368(4)
9.2.3 Three-Dimensional Numerical Simulation of FDM
372(5)
9.2.4 Settlement Calculation
377(2)
9.2.5 Effects and Analysis
379(1)
9.3 Case Study
380(1)
9.4 Exercises
380(1)
10 Groundwater Pollution and Corrosivity Assessment 381(24)
10.1 Groundwater Quantity Analysis
381(6)
10.1.1 Groundwater Quantity Analysis Representation Methods
381(3)
10.1.2 Groundwater Quantity Analysis Contents
384(1)
10.1.3 Water Sample Requirements
385(2)
10.2 Groundwater Pollution
387(5)
10.2.1 Concepts of Groundwater Pollution
387(1)
10.2.2 Pollutants, Pollution Sources, and Pollution Paths or Ways
388(3)
10.2.3 Investigation and Monitoring of Groundwater Pollution
391(1)
10.3 Groundwater Corrosion Evaluation
392(9)
10.3.1 Groundwater Corrosive Effects to Concrete
392(8)
10.3.2 Groundwater Corrosive Effects to Steel
400(1)
10.4 Case Study
401(2)
10.5 Exercises
403(2)
Bibliography 405
Prof.Tang is an outstanding professor in Tongji University in the area of urban geological engineering and engineering environmental effect; and urban land subsidence engineering. He is involved in the research and teaching works of engineering geology, hydrology geology and environmental geology, etc for over 20 years. Currently, his researching interests lie in engineering land subsidence caused by urban high-dense buildings in soft area; environmental problems induced by dewatering of foundation pit; dynamic response of soft clay surrounding subway tunnel under cyclic traffic loading; the constitutive model of soft clay after freeze-thaw after artificial ground freezing method in subway; dynamic coupling mechanism analysis during water-soil losses in Karst area. Additionally, he serves as committee member of engineering geology, environmental geology and hydrogeology in Geological Society; He is also the director of hydro-geological committee in Shanghai Geological Society.