Atnaujinkite slapukų nuostatas

El. knyga: Groups, Graphs, and Hypergraphs: Average Sizes of Kernels of Generic Matrices with Support Constraints

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

We develop a theory of average sizes of kernels of generic matrices with support constraints defined in terms of graphs and hypergraphs. We apply this theory to study unipotent groups associated with graphs. In particular, we establish strong uniformity results pertaining to zeta functions enumerating conjugacy classes of these groups. We deduce that the numbers of conjugacy classes of Fq-points of the groups under consideration depend polynomially on q. Our approach combines group theory, graph theory, toric geometry, and p-adic integration.

Our uniformity results are in line with a conjecture of Higman on the numbers of conjugacy classes of unitriangular matrix groups. Our findings are, however, in stark contrast to related results by Belkale and Brosnan on the numbers of generic symmetric matrices of given rank associated with graphs.
1. Introduction
2. Ask zeta functions and modules over polynomial rings
3. Modules and module representations from (hyper)graphs
4. Modules over toric rings and associated zeta functions
5. Ask zeta functions of hypergraphs
6. Uniformity for ask zeta functions of graphs
7. Graph operations and ask zeta functions of cographs
8. Cographs, hypergraphs, and cographical groups
9. Further examples
10. Open problems
Tobias Rossmann, University of Galway, Ireland.

Christopher Voll, Universitat Bielefeld, Germany.