Atnaujinkite slapukų nuostatas

El. knyga: Handbook of Asynchronous Machines with Variable Speed [Wiley Online]

  • Formatas: 409 pages
  • Serija: ISTE
  • Išleidimo metai: 08-Mar-2011
  • Leidėjas: ISTE Ltd and John Wiley & Sons Inc
  • ISBN-10: 1118601033
  • ISBN-13: 9781118601037
Kitos knygos pagal šią temą:
  • Wiley Online
  • Kaina: 234,72 €*
  • * this price gives unlimited concurrent access for unlimited time
  • Formatas: 409 pages
  • Serija: ISTE
  • Išleidimo metai: 08-Mar-2011
  • Leidėjas: ISTE Ltd and John Wiley & Sons Inc
  • ISBN-10: 1118601033
  • ISBN-13: 9781118601037
Kitos knygos pagal šią temą:
This handbook deals with the asynchronous machine in its close environment. It was born from a reflection on this electromagnetic converter whose integration in industrial environments takes a wide part. Previously this type of motor operated at fixed speed, from now on it has been integrated more and more in processes at variable speed. For this reason it seemed useful, or necessary, to write a handbook on the various aspects from the motor in itself, via the control and while finishing by the diagnosis aspect. Indeed, an asynchronous motor is used nowadays in industry where variation speed and reliability are necessary. We must know permanently for the sensitive systems, the state of process and to inform the operator of the appearance of any anomaly and its severity.
Foreword xiii
Introduction xvii
Chapter 1 Sensors and Electrical Measurements
1(24)
1.1 Optical encoder
2(5)
1.1.1 Technical aspect
2(1)
1.1.2 Absolute encoder
3(3)
1.1.3 Incremental encoder
6(1)
1.2 The velocity measurement
7(2)
1.2.1 Method of the frequency counter
7(1)
1.2.2 Method of the period measurement
8(1)
1.3 The resolver
9(5)
1.4 The isolated measurement
14(1)
1.4.1 The isolated ammeter
14(1)
1.4.2 The isolated voltmeter
15(1)
1.5 The numerical aspect
15(1)
1.6 The analog to digital converter
16(5)
1.6.1 Principle of the flash converter
17(1)
1.6.2 Principle of the successive approximation converter
18(1)
1.6.3 The zero-order hold
18(1)
1.6.4 The multiplexer
19(1)
1.6.5 Principle of converter using slope(s)
20(1)
1.7 The digital-to-analog converter
21(1)
1.8 The digital output
22(1)
1.9 The arithmetic logic unit
22(1)
1.10 Real time or abuse language
23(1)
1.11 Programming
24(1)
Chapter 2 Analog, Numerical Control
25(34)
2.1 Structure of a regulator
25(1)
2.2 Stability of a system
26(4)
2.2.1 Introduction
26(1)
2.2.2 A formal criterion
27(1)
2.2.3 A graphical criterion
28(1)
2.2.4 The stability criterion
29(1)
2.3 Precision of systems
30(1)
2.3.1 The initial and final value
30(1)
2.3.2 The precision of systems
31(1)
2.4 Correction of systems
31(3)
2.4.1 The lag and lead corrector
32(1)
2.4.2 Other correctors
33(1)
2.5 Nonlinear control
34(1)
2.5.1 First harmonic method
34(1)
2.5.2 The oscillation stability
34(1)
2.6 Practical method of identification and control
35(1)
2.6.1 Broida's method
35(1)
2.6.2 Ziegler's and Nichols's method
36(1)
2.7 The digital correctors
36(9)
2.7.1 Digital controller
36(1)
2.7.2 The Z-transform
37(1)
2.7.3 The Z-transform of a function
38(1)
2.7.4 Advanced Z-transform
39(1)
2.7.5 The Z-transform of a loop
40(1)
2.7.6 Some theorems
41(1)
2.7.6.1 The initial and final value
41(1)
2.7.6.2 The recurrence relation
41(1)
2.7.6.3 The fraction expansion
42(1)
2.7.7 The Jury stability criterion
42(1)
2.7.8 Stability: graphical criterion
43(1)
2.7.8.1 The bilinear transform
44(1)
2.7.8.2 The formal criterion
44(1)
2.7.8.3 The graphical criterion
45(1)
2.8 Classical controllers
45(7)
2.8.1 The PID structure
46(1)
2.8.2 The PI anti-windup structure
46(2)
2.8.3 Conversion of an analog controller to a digital controller
48(1)
2.8.3.1 Approximation of the integrator
48(1)
2.8.3.2 Use of the bilinear transform
49(3)
2.9 Disadvantages of digital controller
52(7)
2.9.1 Choice of the sampling period
52(1)
2.9.2 Noise
53(1)
2.9.2.1 Reminder of some concepts
53(1)
2.9.2.2 Quantization by truncation
53(1)
2.9.2.3 Quantization by rounding
54(1)
2.9.2.4 Quantization of a product using two's complement
55(1)
2.9.2.5 Quantization of a product by truncation
56(1)
2.9.2.6 The signal-to-quantization noise ratio
57(1)
2.9.3 Cycles limits and limitations
58(1)
Chapter 3 Models of Asynchronous Machines
59(78)
3.1 The induction motor
59(7)
3.1.1 The electromagnetic torque
62(1)
3.1.2 The equivalent scheme
63(3)
3.2 The squirrel cage induction motor
66(16)
3.2.1 The stator inductances
67(2)
3.2.2 The stator mutual inductances
69(1)
3.2.3 The rotor inductances
70(2)
3.2.4 The rotor mutual inductances
72(1)
3.2.5 The stator-rotor mutual inductances
73(2)
3.2.6 The rotor voltage equations
75(1)
3.2.7 The voltage and mechanical equations
75(2)
3.2.8 Reduction of the model
77(5)
3.3 The static and dynamic behavior
82(17)
3.3.1 The steady state of the induction machine
82(1)
3.3.1.1 Assessment of the power
82(2)
3.3.1.2 Characteristics of the electromagnetic torque
84(4)
3.3.2 Some practical characteristics
88(4)
3.3.3 The dynamics of the induction motor
92(2)
3.3.3.1 No choice of reference frame
94(1)
3.3.3.2 Choice of rotor reference frame
94(1)
3.3.3.3 Choice of stator reference frame
95(1)
3.3.3.4 Choice of synchronous reference frame
95(1)
3.3.3.5 Arrangement of variables
96(2)
3.3.4 Some electromagnetic torque expressions
98(1)
3.4 Winding and induced harmonics
99(16)
3.4.1 Principle of the rotating field
100(3)
3.4.2 The effect of currents
103(1)
3.4.2.1 Effect of unbalanced currents
104(2)
3.4.2.2 Effect of non-sinusoidal currents
106(1)
3.4.2.3 Effect of non-sinusoidal winding
107(1)
3.4.2.4 Effect of harmonic components and winding
108(1)
3.4.3 Choices of winding
108(1)
3.4.3.1 Single-layer winding
109(3)
3.4.3.2 Concentric and distributed winding
112(1)
3.4.3.3 Double-layer winding
113(2)
3.5 Squirrel cage
115(3)
3.5.1 The fundamental component of MMF
115(1)
3.5.2 Effect of harmonics due to slots
116(1)
3.5.3 Effect of harmonic components on the torque
117(1)
3.6 Variation in air-gap permeance
118(3)
3.6.1 Effect of the rotor and stator slots
119(1)
3.6.2 Effect of magnetic saturation
120(1)
3.6.3 Effect of eccentricity
120(1)
3.7 Noise and vibrations
121(4)
3.7.1 The first harmonics approach
122(2)
3.7.2 Choice of the number of rotor bars in squirrel-cage induction
124(1)
3.8 Influence of rotor frequency
125(5)
3.8.1 One ideal rotor bar at null frequency
126(1)
3.8.1.1 Aspects of the rotor bar
126(1)
3.8.1.2 The aspect of the isthmus
127(1)
3.8.1.3 Synthesis
128(1)
3.8.2 One ideal rotor bar at non-null frequency
128(1)
3.8.2.1 The aspect of inductance
129(1)
3.8.2.2 The aspect of resistance
129(1)
3.8.2.3 Synthesis
129(1)
3.9 Thermal behavior
130(7)
3.9.1 Insulation classes
131(1)
3.9.2 Static thermal model
132(2)
3.9.3 A dynamic hybrid thermal model
134(3)
Chapter 4 Speed Variation
137(136)
4.1 Cases of multiphase machines
137(27)
4.1.1 Motors with a high number of phases
138(1)
4.1.1.1 Type-I motors
138(2)
4.1.1.2 Type-II motors
140(1)
4.1.2 Interactions between harmonics
141(3)
4.1.3 Three-phase induction machine
144(1)
4.1.3.1 Three-phase model
144(2)
4.1.3.2 Application in another frame
146(5)
4.1.4 Five-phase induction machine
151(4)
4.1.5 Double-star induction motor
155(1)
4.1.5.1 Six-phase induction motor: version 1
156(5)
4.1.5.2 Six-phase induction motor: version 2
161(3)
4.2 Control of asynchronous motors
164(52)
4.2.1 The basic environment
166(1)
4.2.2 Scalar control: V/f
167(2)
4.2.3 Vector control: V/f
169(2)
4.2.3.1 A classical approach
171(1)
4.2.3.2 Variant without a speed sensor
172(3)
4.2.4 Direct torque control (DTC)
175(3)
4.2.4.1 The concept
178(3)
4.2.4.2 Strategy of vector choice
181(1)
4.2.4.3 Torque ripple
182(2)
4.2.4.4 Three-level inverter
184(5)
4.2.4.5 Influence of voltage limitation
189(1)
4.2.4.6 The DTC-SVM approach
189(3)
4.2.4.7 Prediction of the torque ripple
192(1)
4.2.4.8 Application to a five-phase induction motor
193(1)
4.2.5 Direct self-control approach (DSC)
194(3)
4.2.6 Vector control: FOC
197(3)
4.2.6.1 Application to three-phase induction motors
200(3)
4.2.6.2 Application to five-phase induction motors
203(4)
4.2.6.3 Application to six-phase induction motors
207(1)
4.2.7 Control without a position sensor
208(1)
4.2.8 Exploitation of natural asymmetries
209(1)
4.2.8.1 The static and dynamic eccentricity
209(1)
4.2.8.2 The rotor slots effect
210(1)
4.2.8.3 The magnetic saturation effect
211(1)
4.2.8.4 The estimation of the velocity
211(2)
4.2.8.5 Spectrum estimation
213(1)
4.2.9 Estimation by high-frequency injection
213(3)
4.3 Identification of parameter aspects
216(11)
4.3.1 Classical methods
216(1)
4.3.1.1 The step method
217(2)
4.3.1.2 Empirical method
219(2)
4.3.2 Generic methods
221(1)
4.3.2.1 Principle of the method based on the model
221(1)
4.3.2.2 The gradient method
222(1)
4.3.2.3 The Newton-Raphson method
222(1)
4.3.2.4 The Marquardt-Levenberg method
222(1)
4.3.2.5 The genetic algorithm
223(2)
4.3.2.6 Identification of electrical and mechanical parameters
225(1)
4.3.3 Conclusion
226(1)
4.4 Voltage inverter converters
227(41)
4.4.1 Inverters using the pulse width modulation technique
227(1)
4.4.1.1 Two-level inverter
228(4)
4.4.1.2 Over-modulation
232(1)
4.4.1.3 Three levels inverter
233(2)
4.4.1.4 Three-level inverter using clamped capacitor
235(1)
4.4.1.5 Four-level inverter
236(3)
4.4.1.6 Multi-levels inverter
239(4)
4.4.2 The inverters using the space vector modulation
243(2)
4.4.2.1 Application to the three-phase induction motor
245(4)
4.4.2.2 Application to the five-phase induction motor
249(4)
4.4.2.3 Application to the six-phase induction motor
253(4)
4.4.2.4 Multilevel aspect
257(4)
4.4.3 The matrix converter
261(2)
4.4.3.1 Direct matrix converter
263(3)
4.4.3.2 Indirect matrix converter
266(2)
4.5 Rectifiers based on the PWM
268(5)
4.5.1 Two-level rectifier
268(2)
4.5.2 Three-level rectifier
270(3)
Chapter 5 Tools of Fuzzy Logic
273(24)
5.1 Preamble
273(1)
5.2 Introduction
274(1)
5.3 Fuzzy logic
275(5)
5.3.1 Definitions and norms
275(1)
5.3.2 Some variants
276(1)
5.3.3 T-norm and T-conorm
276(1)
5.3.4 Membership functions
277(1)
5.3.5 Inference engine
278(2)
5.3.6 Defuzzification
280(1)
5.4 Fuzzy logic controller
280(4)
5.5 Fuzzy and adaptive PI
284(11)
5.5.1 Examples of programs to calculate a fuzzy surface
286(1)
5.5.1.1 The layout of a fuzzy surface
286(1)
5.5.1.2 Routine of a PI-fuzzy controller
287(1)
5.5.2 Examples of application
288(1)
5.5.3 Examples of simulation results
289(1)
5.5.3.1 Controller based on a fuzzy PI
289(2)
5.5.3.2 A controller based on a fuzzy PID
291(1)
5.5.4 Examples of tables of rules
291(4)
5.6 Conclusion
295(2)
Chapter 6 Diagnostics and Signals Pointing to a Change
297(40)
6.1 Signals and measurements
298(1)
6.2 Defects
299(10)
6.2.1 Problems with broken bars
300(2)
6.2.2 Problems in the stator
302(2)
6.2.3 Problems due to eccentricities
304(3)
6.2.4 Problems due to speed ripples
307(1)
6.2.5 Problems with ball bearings
307(2)
6.3 Analysis of signals
309(8)
6.3.1 Fast Fourier transform analysis of the stator current
309(1)
6.3.2 Fast Fourier transform
309(2)
6.3.3 Discrete fast Fourier transform
311(1)
6.3.4 Windows functions
312(1)
6.3.4.1 The Hamming function
313(1)
6.3.4.2 The Hanning function
313(1)
6.3.4.3 The Blackmann function
313(1)
6.3.4.4 The Bartlett function
313(1)
6.3.4.5 The Kaiser function
313(1)
6.3.5 Sliding discrete fast Fourier transform
314(2)
6.3.5.1 Zoom effect
316(1)
6.4 Some considerations regarding broken bar defects
317(5)
6.4.1 Model of the induction motor
317(1)
6.4.2 Inherent frequencies in the broken bar defect
318(2)
6.4.3 Evaluation of the magnitude of the left line
320(1)
6.4.4 Equivalent model in the steady state
320(2)
6.5 Evaluation of the severity of broken bars
322(15)
6.5.1 Some spectra results
322(4)
6.5.2 Evaluation of the severity of broken bars
326(1)
6.5.2.1 Analytical approach
326(2)
6.5.2.2 Artificial intelligence approach
328(2)
6.5.2.3 Self-extraction of signatures: an application of PSO
330(5)
6.5.3 Wireless communication
335(2)
Exercise No. 1 Fuzzy Logic
337(8)
1.1 Adaptive k and ki coefficients in function of the error
337(1)
1.2 Adaptive k and ki coefficients in function of the error and its derivative
338(1)
1.3 Answers
339(6)
Exercise No. 2 The Stator Defect
345(12)
2.1 Equations of the induction motor under stator defect
347(1)
2.2 Torque ripple due to a stator defect
348(1)
2.3 Fault current estimation
349(1)
2.4 Schematic model of three-phase induction motor under a stator defect
350(1)
2.5 Answers
351(6)
Exercise No. 3 The Control of Five-Phase Induction Motors
357(16)
3.1 The five-phase system
358(1)
3.2 Distribution of active currents
359(3)
3.3 A model for control
362(2)
3.4 Answers
364(9)
Exercise No. 4 The Control of Serial Connected Induction Motors
373(12)
4.1 Study about the serial connection of two five-phase induction motors
374(1)
4.2 Study on the serial connection of several seven-phase induction motors
375(2)
4.3 Study on the serial connection of multi-phase induction motors
377(1)
4.4 Answers
378(7)
Exercise No. 5 Fault Detection of a Three-Phase Voltage Inverter Converter
385(8)
5.1 A conducting fault
386(1)
5.2 Fault detector
387(2)
5.3 Monitoring of the DC component
389(1)
5.4 Answers
390(3)
Appendix. Some Mathematical Expressions
393(6)
A.1 Laplace transforms
393(1)
A.2 Z transforms
394(1)
A.3 W transforms
395(1)
A.4 Common expressions
395(1)
A.5 Trigonometric identities
395(3)
A.5.1 Addition
396(1)
A.5.2 Sum identities
396(1)
A.5.3 Product identities
397(1)
A.5.4 The product
397(1)
A.5.5 Sum of sinus and cosinus
397(1)
A.6 Mathematical series
398(1)
A.7 Greek numbers
398(1)
Bibliography 399(8)
Index 407
Hubert Razik, Nancy-Université Henri Poincaré, France.