Atnaujinkite slapukų nuostatas

Handbook of the Band Structure of Elemental Solids: From Z = 1 To Z = 112 2nd ed. 2015 [Kietas viršelis]

  • Formatas: Hardback, 655 pages, aukštis x plotis: 235x155 mm, 101 Illustrations, color; 287 Illustrations, black and white; XV, 655 p. 388 illus., 101 illus. in color., 1 Hardback
  • Išleidimo metai: 10-Nov-2014
  • Leidėjas: Springer-Verlag New York Inc.
  • ISBN-10: 1441982639
  • ISBN-13: 9781441982636
  • Formatas: Hardback, 655 pages, aukštis x plotis: 235x155 mm, 101 Illustrations, color; 287 Illustrations, black and white; XV, 655 p. 388 illus., 101 illus. in color., 1 Hardback
  • Išleidimo metai: 10-Nov-2014
  • Leidėjas: Springer-Verlag New York Inc.
  • ISBN-10: 1441982639
  • ISBN-13: 9781441982636

This handbook consists of tabulations of the Slater-Koster parameters of 53 elements in the periodic table, including metals, semiconductors, and insulators.



This handbook presents electronic structure data and tabulations of Slater-Koster parameters for the whole periodic table. This second edition presents data sets for all elements up to Z = 112, Copernicium, whereas the first edition contained only 53 elements.

In this new edition, results are given for the equation of state of the elements together with the parameters of a Birch fit, so that the reader can regenerate the results and derive additional information, such as Pressure-Volume relations and variation of Bulk Modulus with Pressure. For each element, in addition to the equation of state, the energy bands, densities of states and a set of tight-binding parameters is provided.

For a majority of elements, the tight-binding parameters are presented for both a two- and three-center approximation. For the hcp structure, new three-center tight-binding results are given. Other new material in this edition include: energy bands and densities of states of all rare-earth metals, a discussion of the McMillan-Gaspari-Gyorffy theories and a tabulation of the electron-ion interaction matrix elements. The evaluation of the Stoner criterion for ferromagnetism is examined and results are tabulated. This edition also contains two new appendices discussing the effects of spin-orbit interaction and a modified version of Harrison's tight-binding theory for metals which puts the theory on a quantitative basis.

1 Introduction
1(38)
1.1 Introduction to the New Edition
1(1)
1.2 Introduction to the First Edition
1(1)
1.3 The Tight-Binding Formalism
2(2)
1.4 The Two-Center Approximation
4(4)
1.4.1 BCC Structure
4(2)
1.4.2 Fee Structure
6(1)
1.4.3 The Diamond Structure
7(1)
1.5 Computational Details
8(11)
1.5.1 The bcc Structure
11(2)
1.5.2 The fcc Structure
13(4)
1.5.3 The Diamond Structure
17(2)
1.5.4 The hcp Structure
19(1)
1.6 Nonorthogonal Hamiltonian
19(1)
1.7 Total Energy: Birch Fit
19(1)
1.8 NRL-Tight-Binding Method
20(2)
1.9 The Gaspari-Gyorffy-McMillan Theory of Superconductivity
22(5)
1.10 The Stoner Criterion
27(1)
1.11 Description of the First-Principles Calculations
28(1)
1.12 Accuracy of the Tight-Binding Calculations
28(2)
1.13 Wavefunctions
30(1)
1.14 Scaling Laws
31(1)
1.15 Calculation of the Densities of States
31(1)
1.16 Systematics
32(3)
1.17 Uses of This Handbook
35(1)
1.18 Description of the Slater-Koster Tables
36(3)
References
36(3)
2 Hydrogen and the Alkali Metals
39(42)
2.1 Hydrogen
39(5)
2.2 The Alkali Metals
44(37)
2.2.1 Lithium
45(6)
2.2.2 Sodium
51(6)
2.2.3 Potassium
57(6)
2.2.4 Rubidium
63(6)
2.2.5 Cesium
69(6)
2.2.6 Francium
75(4)
References
79(2)
3 The Alkaline Earth Metals
81(34)
3.1 Beryllium
82(6)
3.2 Magnesium
88(7)
3.3 Calcium
95(5)
3.4 Strontium
100(5)
3.5 Barium
105(6)
3.6 Radium
111(4)
4 The 3d Transition Metals
115(76)
4.1 Scandium
116(7)
4.2 Titanium
123(7)
4.3 Vanadium
130(6)
4.4 Chromium
136(6)
4.5 Manganese
142(6)
4.6 Iron
148(10)
4.7 Cobalt
158(12)
4.8 Nickel
170(9)
4.9 Copper
179(5)
4.10 Zinc
184(7)
5 The 4d Transition Metals
191(60)
5.1 Yttrium
192(7)
5.2 Zirconium
199(6)
5.3 Niobium
205(6)
5.4 Molybdenum
211(6)
5.5 Technetium
217(6)
5.6 Ruthenium
223(6)
5.7 Rhodium
229(5)
5.8 Palladium
234(5)
5.9 Silver
239(5)
5.10 Cadmium
244(7)
6 The 5d Transition Metals
251(54)
6.1 Hafnium
252(7)
6.2 Tantalum
259(6)
6.3 Tungsten
265(6)
6.4 Rhenium
271(7)
6.5 Osmium
278(7)
6.6 Iridium
285(5)
6.7 Platinum
290(5)
6.8 Gold
295(5)
6.9 Mercury
300(5)
7 Free-Electron-Like Metals of Groups III and IV
305(32)
7.1 Boron
306(3)
7.2 Aluminum
309(5)
7.3 Gallium
314(5)
7.4 Indium
319(6)
7.5 Thallium
325(7)
7.6 Lead
332(5)
8 The Diamond Structure
337(22)
8.1 Carbon
338(5)
8.2 Silicon
343(5)
8.3 Germanium
348(5)
8.4 Tin (LDA)
353(1)
8.5 Tin (GGA)
354(5)
9 Group 15 Elements: Pnictogens
359(16)
9.1 Nitrogen
360(3)
9.2 Phosphorus
363(3)
9.3 Arsenic
366(3)
9.4 Antimony
369(3)
9.5 Bismuth
372(3)
10 Group 16 Elements: Chalcogens
375(16)
10.1 Oxygen
376(3)
10.2 Sulfur
379(3)
10.3 Selenium
382(3)
10.4 Tellurium
385(3)
10.5 Polonium
388(3)
Reference
390(1)
11 Group 17 Elements: Halogens
391(12)
11.1 Fluorine
392(2)
11.2 Chlorine
394(2)
11.3 Bromine
396(2)
11.4 Iodine
398(2)
11.5 Astatine
400(3)
12 The Noble Gases
403(26)
12.1 Helium
404(3)
12.2 Neon
407(5)
12.3 Argon
412(5)
12.4 Krypton
417(5)
12.5 Xenon
422(5)
12.6 Radon
427(2)
13 Lanthanides
429(28)
13.1 Lanthanum Z = 57
430(4)
13.2 Cerium Z = 58
434(2)
13.3 Praseodymium Z = 59
436(2)
13.4 Neodymium Z = 60
438(2)
13.5 Promethium Z = 61
440(2)
13.6 Samarium Z = 62
442(2)
13.7 Europium Z = 63
444(2)
13.8 Gadolinium Z = 64
446(1)
13.9 Terbium Z = 65
447(1)
13.10 Dysprosium Z = 66
448(1)
13.11 Holmium Z = 67
449(1)
13.12 Erbium Z = 68
450(1)
13.13 Thulium Z = 69
451(1)
13.14 Ytterbium Z = 70
452(1)
13.15 Lutetium Z = 71
453(4)
Reference
455(2)
14 Actinides
457(26)
14.1 Actinium Z = 89
458(5)
14.2 Thorium Z = 90
463(5)
14.3 Protactinium Z = 91
468(1)
14.4 Uranium Z = 92
469(1)
14.5 Neptunium Z = 93
470(1)
14.6 Plutonium Z = 94
471(1)
14.7 Americium Z = 95
472(1)
14.8 Curium Z = 96
473(1)
14.9 Berkelium Z = 97
474(1)
14.10 Californium Z = 98
475(1)
14.11 Einsteinium Z = 99
476(1)
14.12 Fermium Z = 100
477(1)
14.13 Mendelevium Z = 101
478(1)
14.14 Nobelium Z = 102
479(2)
14.15 Lawrencium Z = 103
481(2)
15 Transactinides
483(28)
15.1 Rutherfordium Z = 104
484(3)
15.2 Dubnium Z= 105
487(3)
15.3 Seaborgium Z = 106
490(3)
15.4 Bohrium Z = 107
493(3)
15.5 Hassium Z = 108
496(3)
15.6 Meitnerium Z = 109
499(3)
15.7 Darmstadtium Z = 110
502(3)
15.8 Roentgenium Z = 111
505(3)
15.9 Copernicium Z = 112
508(3)
Appendix 1 Spin-orbit Coupling 511(10)
Appendix 2 Modifications and Extensions to Harrison's Tight-Binding Theory 521(6)
Appendix 3 Alternate Structures 527(48)
Appendix 4 Computer Programs 575
Dimitrios A. Papaconstantopoulos was born in Athens, Greece, and graduated from the University of Athens with a B.S. degree in physics in 1961. He received a Ph.D. in theoretical solid state physics from the University of London, England, in 1967. He was director of the Center for Computational Materials Science in the Materials and Technology Division of the Naval Research Laboratory from 1992 to 2004.

His areas of expertise are in computational solid state physics and include band structure calculations, theory of superconductivity, and theory of alloys. He has authored 257 journal papers and two books and has given more than 300 presentations at professional meetings. He has won four Alan Berman Research Publication awards and the 1990 Sigma Xi Pure Science Award at NRL. He has been a Fellow of the American Physical Society since 1980. He has over 10,000 citations in the scientific literature. In August 2000 he was awarded the Navy Meritorious Civilian Service Award. In August 2004 he was appointed as professor of materials science at George Mason University. In January 2006 he was elected Chair of the Department of Computational and Data Sciences.