Atnaujinkite slapukų nuostatas

Handbook of Blood Gas/Acid-Base Interpretation 2nd ed. 2013 [Minkštas viršelis]

  • Formatas: Paperback / softback, 332 pages, aukštis x plotis: 235x155 mm, weight: 5969 g, 359 Illustrations, color; 2 Illustrations, black and white; XVIII, 332 p. 361 illus., 359 illus. in color., 1 Paperback / softback
  • Išleidimo metai: 20-Apr-2013
  • Leidėjas: Springer London Ltd
  • ISBN-10: 1447143140
  • ISBN-13: 9781447143147
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 332 pages, aukštis x plotis: 235x155 mm, weight: 5969 g, 359 Illustrations, color; 2 Illustrations, black and white; XVIII, 332 p. 361 illus., 359 illus. in color., 1 Paperback / softback
  • Išleidimo metai: 20-Apr-2013
  • Leidėjas: Springer London Ltd
  • ISBN-10: 1447143140
  • ISBN-13: 9781447143147
Kitos knygos pagal šią temą:

Handbook of Blood Gas/Acid-Base Interpretation, 2nd edition, simplifies concepts in blood gas/acid base interpretation and explains in an algorithmic fashion the physiological processes for managing respiratory and metabolic disorders. With this handbook, medical students, residents, nurses, and practitioners of respiratory and intensive care will find it possible to quickly grasp the principles underlying respiratory and acid-base physiology, and apply them. Uniquely set out in the form of flow-diagrams/algorithms charts, this handbook introduces concepts in a logically organized sequence and gradually builds upon them. The treatment of the subject in this format, describing processes in logical steps makes it easy for the reader to cover a difficult- and sometimes dreaded- subject rapidly.



Uniquely framed in flow-diagrams/algorithms, this book offers a thorough introduction to blood gas/acid-base interpretation, with a strong thread of pulmonary and renal physiology. For clarity, each section is designed for a single power point slide.
1 Gas Exchange 1(50)
1.1 The Respiratory Centre
3(1)
1.2 Rhythmicity of the Respiratory Centre
4(1)
1.3 The Thoracic Neural Receptors
5(1)
1.4 Chemoreceptors
6(1)
1.5 The Central Chemoreceptors and the Alpha-Stat Hypothesis
7(1)
1.6 Peripheral Chemoreceptors
8(1)
1.7 Chemoreceptors in Hypoxia
9(1)
1.8 Response of the Respiratory Centre to Hypoxemia
10(1)
1.9 Respiration
11(1)
1.10 Partial Pressure of a Mixture of Gases
12(1)
1.10.1 Atmospheric Pressure
12(1)
1.10.2 Gas Pressure
12(1)
1.11 Partial Pressure of a Gas
13(1)
1.12 The Fractional Concentration of a Gas (Fgas)
14(1)
1.13 Diffusion of Gases
15(1)
1.14 Henry's Law and the Solubility of a Gas in Liquid
16(1)
1.15 Inhaled Air
17(1)
1.16 The O2 Cascade
18(2)
1.17 PaO2
20(1)
1.18 The Modified Alveolar Gas Equation
21(1)
1.19 The Determinants of the Alveolar Gas Equation
22(1)
1.20 The Respiratory Quotient (RQ) in the Alveolar Air Equation
23(1)
1.21 FIO2, PAO2, PaO2 and CaO2
24(1)
1.22 DO2, CaO2, SpO2, PaO2 and FIO2
25(1)
1.23 O2 Content: An Illustrative Example
26(1)
1.24 Mechanisms of Hypoxemia
27(1)
1.25 Processes Dependent Upon Ventilation
28(1)
1.26 Defining Hypercapnia (Elevated CO2)
29(1)
1.27 Factors That Determine PaCO2 Levels
30(1)
1.28 Relationship Between CO2 Production and Elimination
31(1)
1.29 Exercise, CO2 Production and PaCO2
32(1)
1.30 Dead Space
33(1)
1.31 Minute Ventilation and Alveolar Ventilation
34(1)
1.32 The Determinants of the PaCO2
35(1)
1.33 Alveolar Ventilation in Health and Disease
36(1)
1.34 Hypoventilation and PaCO2
37(1)
1.35 The Causes of Hypoventilation
38(1)
1.36 Blood Gases in Hypoventilation
39(1)
1.37 Decreased CO2 Production
40(1)
1.37.1 Summary: Conditions That Can Result in Hypercapnia
40(1)
1.38 V/Q Mismatch: A Hypothetical Model
41(1)
1.39 V/Q Mismatch and Shunt
42(1)
1.40 Quantifying Hypoxemia
43(1)
1.41 Compensation for Regional V/Q Inequalities
44(1)
1.42 Alveolo-Arterial Diffusion of Oxygen (A-aDO2)
45(1)
1.43 A-aDO2 is Difficult to Predict on Intermediate Levels of FIO2
46(1)
1.44 Defects of Diffusion
47(1)
1.45 Determinants of Diffusion: DLCO
48(1)
1.46 Timing the ABG
49(1)
1.47 A-aDO2 Helps in Differentiating Between the Different Mechanisms of Hypoxemia
50(1)
2 The Non-Invasive Monitoring of Blood Oxygen and Carbon Dioxide Levels 51(44)
2.1 The Structure and Function of Haemoglobin
53(1)
2.2 Co-operativity
54(1)
2.3 The Bohr Effect and the Haldane Effect
55(1)
2.4 Oxygenated and Non-oxygenated Hemoglobin
56(1)
2.5 PaO2 and the Oxy-hemoglobin Dissociation Curve
57(1)
2.6 Monitoring of Blood Gases
58(1)
2.6.1 Invasive O2 Monitoring
58(1)
2.6.2 The Non-invasive Monitoring of Blood Gases
58(1)
2.7 Principles of Pulse Oximetry
59(1)
2.8 Spectrophotometry
60(1)
2.9 Optical Plethysmography
61(1)
2.10 Types of Pulse Oximeters
62(1)
2.11 Pulse Oximetry and PaO2
63(1)
2.12 P50
64(1)
2.13 Shifts in the Oxy-hemoglobin Dissociation Curve
65(1)
2.14 Oxygen Saturation (SpO2) in Anemia and Skin Pigmentation
66(1)
2.15 Oxygen Saturation (SpO2) in Abnormal Forms of Hemoglobin
67(1)
2.16 Mechanisms of Hypoxemia in Methemoglobinemia
68(1)
2.17 Methemoglobinemias: Classification
69(1)
2.18 Sulfhemoglobinemia
70(1)
2.19 Carbon Monoxide (CO) Poisoning
71(1)
2.20 Saturation Gap
72(1)
2.21 Sources of Error While Measuring SpO2
73(2)
2.22 Point of Care (POC) Cartridges
75(1)
2.23 Capnography and Capnometry
76(1)
2.24 The Capnographic Waveform
77(1)
2.25 Main-Stream and Side-Stream Capnometers
78(1)
2.26 PEtCO2 (EtCO2): A Surrogate for PaCO2
79(1)
2.27 Factors Affecting PEtCO2
80(1)
2.28 Causes of Increased PaCO2-PEtCO2 Difference
81(1)
2.29 Bohr's Equation
82(1)
2.30 Application of Bohr's Equation
83(1)
2.31 Variations in EtCO2
84(1)
2.32 False-Positive and False-Negative Capnography
85(1)
2.33 Capnography and Cardiac Output
86(1)
2.34 Capnography as a Guide to Successful Resuscitation
87(1)
2.35 Capnography in Respiratory Disease
88(2)
2.36 Esophageal Intubation
90(1)
2.37 Capnography in Tube Disconnection and Cuff Rupture
91(2)
2.37.1 Biphasic Capnograph
91(2)
References
93(2)
3 Acids and Bases 95(28)
3.1 Intracellular and Extracellular pH
96(1)
3.2 pH Differences
97(1)
3.3 Surrogate Measurement of Intracellular pH
98(1)
3.4 Preferential Permeability of the Cell Membrane
99(1)
3.5 Ionization and Permeability
100(1)
3.6 The Reason Why Substances Need to Be Ionized
101(1)
3.7 The Exceptions to the Rule
102(1)
3.8 The Hydrogen Ion (H+, Proton)
103(1)
3.9 Intracellular pH Is Regulated Within a Narrow Range
104(1)
3.10 A Narrow Range of pH Does Not Mean a Small Range of the H+ Concentration
105(1)
3.11 The Earliest Concept of an Acid
106(1)
3.12 Arrhenius's Theory
107(1)
3.13 Bronsted-Lowry Acids
108(1)
3.14 Lewis' Approach
109(1)
3.15 The Usanovich Theory
109(1)
3.16 Summary of Definitions of Acids and Bases
110(1)
3.17 Stewart's Physico-Chemical Approach
111(1)
3.18 The Dissociation of Water
112(1)
3.19 Electrolytes, Non-electrolytes and Ions
113(1)
3.20 Strong Ions
114(1)
3.21 Stewart's Determinants of the Acid Base Status
115(1)
3.22 Apparent and Effective Strong Ion Difference
116(1)
3.23 Strong Ion Gap
117(1)
3.24 Major Regulators of Independent Variables
118(1)
3.25 Fourth Order Polynomial Equation
119(2)
3.26 The Workings of Stewart's Approach
121(2)
4 Buffer Systems 123(20)
4.1 Generation of Acids
124(1)
4.2 Disposal of Volatile Acids
125(1)
4.3 Disposal of Fixed Acids
126(1)
4.4 Buffer Systems
127(1)
4.5 Buffers
128(1)
4.6 Mechanisms for the Homeostasis of Hydrogen Ions
129(1)
4.7 Intracellular Buffering
130(1)
4.8 Alkali Generation
131(1)
4.9 Buffer Systems of the Body
132(1)
4.10 Transcellular Ion Shifts with Acute Acid Loading
133(1)
4.11 Time-Frame of Compensatory Responses to Acute Acid Loading
134(1)
4.12 Quantifying Buffering
135(1)
4.13 Buffering in Respiratory Acidosis
136(1)
4.14 Regeneration of the Buffer
137(1)
4.15 Buffering in Alkalosis
137(1)
4.16 Site Buffering
138(1)
4.17 Isohydric Principle
139(1)
4.18 Base-Buffering by the Bicarbonate Buffer System
140(1)
4.19 Bone Buffering
141(1)
4.20 Role of the Liver in Acid-Base Homeostasis
142(1)
5 pH 143(22)
5.1 Hydrogen Ion Activity
144(1)
5.2 Definitions of the Ad-hoc Committee of New York Academy of Sciences, 1965
145(1)
5.3 Acidosis and Alkalosis
146(1)
5.4 The Law of Mass Action
147(1)
5.5 Dissociation Constants
148(1)
5.6 pK
149(1)
5.7 The Buffering Capacity of Acids
150(1)
5.7.1 Buffering Power
150(1)
5.8 The Modified Henderson-Hasselbach Equation
151(2)
5.9 The Difficulty in Handling Small Numbers
153(1)
5.10 The Puissance Hydrogen
154(1)
5.11 Why pH?
155(1)
5.12 Relationship Between pH and H+
156(1)
5.13 Disadvantages of Using a Logarithmic Scale
157(1)
5.14 pH in Relation to pK
158(1)
5.15 Is the Carbonic Acid System an Ideal Buffer System?
159(1)
5.16 The Bicarbonate Buffer System Is Open Ended
160(1)
5.17 Importance of Alveolar Ventilation to the Bicarbonate Buffer System
161(1)
5.18 Difference Between the Bicarbonate and Non-bicarbonate Buffer Systems
162(1)
5.19 Measuring and Calculated Bicarbonate
163(2)
6 Acidosis and Alkalosis 165(6)
6.1 Compensation
166(1)
6.2 Coexistence of Acid Base Disorders
167(1)
6.3 Conditions in Which pH Can Be Normal
168(1)
6.4 The Acid Base Map
169(2)
7 Respiratory Acidosis 171(10)
7.1 Respiratory Failure
172(1)
7.2 The Causes of Respiratory Acidosis
173(1)
7.3 Acute Respiratory Acidosis: Clinical Effects
174(1)
7.4 Effect of Acute Respiratory Acidosis on the Oxy-hemoglobin Dissociation Curve
175(1)
7.5 Buffers in Acute Respiratory Acidosis
176(1)
7.6 Respiratory Acidosis: Mechanisms for Compensation
176(1)
7.7 Compensation for Respiratory Acidosis
177(1)
7.8 Post-hypercapnic Metabolic Alkalosis
178(1)
7.9 Acute on Chronic Respiratory Acidosis
179(1)
7.10 Respiratory Acidosis: Acute or Chronic?
180(1)
8 Respiratory Alkalosis 181(8)
8.1 Respiratory Alkalosis
182(1)
8.2 Electrolyte Shifts in Acute Respiratory Alkalosis
183(1)
8.3 Causes of Respiratory Alkalosis
184(1)
8.4 Miscellaneous Mechanisms of Respiratory Alkalosis
185(2)
8.5 Compensation for Respiratory Alkalosis
187(1)
8.6 Clinical Features of Acute Respiratory Alkalosis
188(1)
9 Metabolic Acidosis 189(48)
9.1 The Pathogenesis of Metabolic Acidosis
191(1)
9.2 The pH, PCO2 and Base Excess: Relationships
192(1)
9.3 The Law of Electroneutrality and the Anion Gap
193(1)
9.4 Electrolytes and the Anion Gap
194(1)
9.5 Electrolytes That Influence the Anion Gap
195(1)
9.6 The Derivation of the Anion Gap
196(1)
9.7 Calculation of the Anion Gap
197(1)
9.8 Causes of a Wide-Anion-Gap Metabolic Acidosis
198(1)
9.9 The Corrected Anion Gap (AG)
199(1)
9.10 Clues to the Presence of Metabolic Acidosis
200(1)
9.11 Normal Anion-Gap Metabolic Acidosis
201(1)
9.12 Pathogenesis of Normal-Anion Gap Metabolic Acidosis
202(1)
9.13 Negative Anion Gap
203(1)
9.14 Systemic Consequences of Metabolic Acidosis
204(1)
9.15 Other Systemic Consequences of Metabolic Acidosis
205(2)
9.16 Hyperkalemia and Hypokalemia in Metabolic Acidosis
207(1)
9.17 Compensatory Response to Metabolic Acidosis
208(1)
9.18 Compensation for Metabolic Acidosis
209(1)
9.19 Total CO2 (TCO2)
210(1)
9.20 Altered Bicarbonate Is Not Specific for a Metabolic Derangement
211(1)
9.21 Actual Bicarbonate and Standard Bicarbonate
212(1)
9.22 Relationship Between ABC and SBC
213(1)
9.23 Buffer Base
214(1)
9.24 Base Excess
215(1)
9.25 Ketosis and Ketoacidosis
216(1)
9.26 Acidosis in Untreated Diabetic Ketoacidosis
217(1)
9.27 Acidosis in Diabetic Ketoacidosis Under Treatment
218(1)
9.28 Renal Mechanisms of Acidosis
219(1)
9.29 L-Lactic Acidosis and D-Lactic Acidosis
220(1)
9.30 Diagnosis of Specific Etiologies of Wide Anion Gap Metabolic Acidosis
221(2)
9.31 Pitfalls in the Diagnosis of Lactic Acidosis
223(1)
9.32 Renal Tubular Acidosis
224(1)
9.33 Distal RTA
225(1)
9.34 Mechanisms in Miscellaneous Causes of Normal Anion Gap Metabolic Acidosis
226(1)
9.35 Toxin Ingestion
227(1)
9.36 Bicarbonate Gap (the Delta Ratio)
228(1)
9.37 Urinary Anion Gap
229(1)
9.38 Utility of the Urinary Anion Gap
230(1)
9.39 Osmoles
231(1)
9.40 Osmolarity and Osmolality
232(1)
9.41 Osmolar Gap
233(1)
9.42 Abnormal Low Molecular Weight Circulating Solutes
234(1)
9.43 Conditions That Can Create an Osmolar Gap
235(1)
Reference
236(1)
10 Metabolic Alkalosis 237(16)
10.1 Etiology of Metabolic Alkalosis
238(1)
10.2 Pathways Leading to Metabolic Alkalosis
239(1)
10.3 Maintenance Factors for Metabolic Alkalosis
240(1)
10.4 Maintenance Factors for Metabolic Alkalosis: Volume Contraction
241(1)
10.5 Maintenance Factors for Metabolic Alkalosis: Dyselectrolytemias
242(1)
10.6 Compensation for Metabolic Alkalosis
243(1)
10.7 Urinary Sodium
244(1)
10.8 Diagnostic Utility of Urinary Chloride (1)
245(1)
10.9 The Diagnostic Utility of Urinary Chloride (2)
246(1)
10.10 Diagnostic Utility of Urinary Chloride (3)
247(1)
10.11 Some Special Causes of Metabolic Alkalosis
248(2)
10.12 Metabolic Alkalosis Can Result in Hypoxemia
250(1)
10.13 Metabolic Alkalosis and the Respiratory Drive
251(2)
11 The Analysis of Blood Gases 253(14)
11.1 Normal Values
254(1)
11.1.1 Venous Blood Gas (VBG) as a Surrogate for ABG Analysis
254(1)
11.2 Step 1: Authentication of Data
255(1)
11.3 Step 2: Characterization of the Acid-Base Disturbance
256(1)
11.4 Step 3: Calculation of the Expected Compensation
257(1)
11.5 The Alpha-Numeric (a-1) Mnemonic
258(1)
11.6 The Metabolic Track
259(1)
11.7 The Respiratory Track
260(1)
11.8 Step 4: The 'Bottom Line': Clinical Correlation
261(4)
11.8.1 Clinical Conditions Associated with Simple Acid-Base Disorders
262(1)
11.8.2 Mixed Disorders
263(2)
11.9 Acid-Base Maps
265(2)
12 Factors Modifying the Accuracy of ABG Results 267(12)
12.1 Electrodes
268(1)
12.2 Accuracy of Blood Gas Values
269(1)
12.3 The Effects of Metabolizing Blood Cells
270(1)
12.4 Leucocyte Larceny
271(1)
12.5 The Effect of an Air Bubble in the Syringe
272(1)
12.6 Effect of Over-Heparization of the Syringe
273(1)
12.7 The Effect of Temperature on the Inhaled Gas Mixture
274(1)
12.8 Effect of Pyrexia (Hyperthermia) on Blood Gases
275(1)
12.9 Effect of Hypothermia on Blood Gases
276(1)
12.10 Plastic and Glass Syringes
277(2)
13 Case Examples 279(48)
13.1 Patient A: A 34 year-old man with Metabolic Encephalopathy
281(1)
13.2 Patient B: A 40 year-old man with Breathlessness
282(1)
13.3 Patient C: A 50 year-old woman with Hypoxemia
283(1)
13.4 Patient D: A 20 year-old woman with Breathlessness
284(1)
13.5 Patient E: A 35 year-old man with Non-resolving Pneumonia
285(1)
13.6 Patient F: A 60 year-old man with Cardiogenic Pulmonary Edema
286(1)
13.7 Patient G: A 72 year-old Drowsy COPD Patient
287(2)
13.8 Patient H: A 30 year-old man with Epileptic Seizures
289(2)
13.9 Patient I: An Elderly Male with Opiate Induced Respiratory Depression
291(2)
13.10 Patient J: A 73 year-old man with Congestive Cardiac Failure
293(2)
13.11 Patient K: A 20 year-old woman with a Normal X-ray
295(2)
13.12 Patient L: A 22 year-old man with a Head Injury
297(2)
13.13 Patient M: A 72 year-old man with Bronchopneumonia
299(2)
13.14 Patient N: A 70 year-old woman with a Cerebrovascular Event
301(2)
13.15 Patient 0: A 60 year-old man with COPD and Cor Pulmonale
303(2)
13.16 Patient P: A 70 year-old smoker with Acute Exacerbation of Chronic Bronchitis
305(2)
13.17 Patient Q: A 50 year-old man with Hematemesis
307(2)
13.18 Patient R: A 68 year-old man with an Acute Abdomen
309(2)
13.19 Patient S: A young woman with Gastroenteritis and Dehydration
311(2)
13.20 Patient T: A 50 year-old woman with Paralytic Ileus
313(2)
13.21 Patient U: An 80 year-old woman with Extreme Weakness
315(2)
13.22 Patient V: A 50 year-old man with Diarrhea
317(2)
13.23 Patient W: A 68 year-old woman with Congestive Cardiac Failure
319(2)
13.24 Patient X: An 82 year-old woman with Diabetic Ketoacidosis
321(2)
13.25 Patient Y: A 50 year-old male in Cardiac Arrest
323(2)
13.26 Patient Z: A 50 year-old Diabetic with Cellulitis
325(2)
Index 327
Ashfaq Hasan, MD, is Professor of Pulmonary Medicine at Deccan College of Medical Sciences, Hyderabad, and a Consultant Pulmonologist at the Care Institute of Medical Sciences, Hyderabad.