Foreword |
|
xxi | |
Preface |
|
xxiii | |
Contributors |
|
xxv | |
1 Overview and Preliminaries |
|
1 | (18) |
|
|
|
|
2 | (1) |
|
|
2 | (1) |
|
1.1.2 Fundamental GCS Questions |
|
|
3 | (1) |
|
1.1.3 Tractability and Computational Complexity |
|
|
3 | (1) |
|
1.2 Parts and Chapters of the Handbook |
|
|
3 | (7) |
|
1.2.1 Part I: Geometric Reasoning Techniques |
|
|
4 | (1) |
|
1.2.2 Part II: Distance Geometry, Configuration Space, and Real Algebraic Geometry Techniques |
|
|
5 | (1) |
|
1.2.3 Part III: Geometric Rigidity Techniques |
|
|
6 | (1) |
|
1.2.4 Part IV: Combinatorial Rigidity Techniques |
|
|
7 | (2) |
|
1.2.4.1 Inductive Constructions |
|
|
8 | (1) |
|
|
8 | (1) |
|
1.2.4.3 Body-Cad, and Point-Line Frameworks |
|
|
9 | (1) |
|
1.2.4.4 Symmetric and Periodic Frameworks and Frameworks under Polyhedral Norms |
|
|
9 | (1) |
|
1.2.5 Missing Topics and Chapters |
|
|
9 | (1) |
|
1.3 Terminology Reconciliation and Basic Concepts |
|
|
10 | (5) |
|
|
10 | (1) |
|
1.3.2 Rigidity of Frameworks |
|
|
10 | (2) |
|
1.3.3 Generic Rigidity of Frameworks |
|
|
12 | (1) |
|
1.3.4 Approximate Degree-of-Freedom and Sparsity |
|
|
13 | (2) |
|
1.4 Alternative Pathway through the Book |
|
|
15 | (4) |
I Geometric Reasoning, Factorization and Decomposition |
|
19 | (180) |
|
2 Computer-Assisted Theorem Proving in Synthetic Geometry |
|
|
21 | (40) |
|
|
|
|
|
22 | (1) |
|
2.2 Automated Theorem Proving |
|
|
22 | (12) |
|
|
23 | (1) |
|
2.2.2 Nondegenerate Conditions |
|
|
23 | (1) |
|
2.2.3 Purely Synthetic Methods |
|
|
23 | (1) |
|
|
24 | (1) |
|
2.2.3.2 Deductive Database Method, GRAMY, and iGeoTutor |
|
|
24 | (1) |
|
2.2.3.3 Logic-Based Approaches |
|
|
26 | (2) |
|
2.2.4 Semisynthetic Methods |
|
|
28 | (1) |
|
|
28 | (1) |
|
2.2.4.2 Full-Angle Method . |
|
|
30 | (1) |
|
2.2.4.3 Vector-Based Method |
|
|
31 | (1) |
|
2.2.4.4 Mass-Point Method |
|
|
32 | (1) |
|
2.2.5 Provers Implementations and Repositories of Theorems |
|
|
33 | (1) |
|
2.3 Interactive Theorem Proving |
|
|
34 | (28) |
|
2.3.1 Formalization of Foundations of Geometry |
|
|
34 | (1) |
|
2.3.1.1 Hilbert's Geometry |
|
|
35 | (1) |
|
2.3.1.2 Tarski's Geometry |
|
|
37 | (1) |
|
2.3.1.3 Axiom Systems and Continuity Properties |
|
|
38 | (1) |
|
2.3.1.4 Other Axiom Systems and Geometries |
|
|
40 | (1) |
|
|
41 | (1) |
|
2.3.2 Higher Level Results |
|
|
41 | (1) |
|
2.3.3 Other Formalizations Related to Geometry |
|
|
42 | (2) |
|
2.3.4 Verified Automated Reasoning |
|
|
44 | (17) |
|
3 Coordinate-Free Theorem Proving in Incidence Geometry |
|
|
61 | (24) |
|
|
|
|
62 | (5) |
|
3.1.1 Incidence Geometry in the Plane |
|
|
62 | (3) |
|
3.1.2 Other Primitive Operations |
|
|
65 | (1) |
|
3.1.3 Projective Invariance |
|
|
66 | (1) |
|
3.2 Bracket Algebra: Straightening, Division, and Final Polynomials |
|
|
67 | (6) |
|
3.2.1 Bracket Algebra and Straightening |
|
|
67 | (3) |
|
|
70 | (1) |
|
|
71 | (2) |
|
3.3 Cayley Expansion and Factorization |
|
|
73 | (6) |
|
|
73 | (2) |
|
3.3.2 Cayley Factorization |
|
|
75 | (1) |
|
3.3.3 Cayley Expansion and Factorization in Geometric Theorem Proving |
|
|
76 | (1) |
|
3.3.4 Rational Invariants and Antisymmetrization |
|
|
77 | (2) |
|
3.4 Bracket Algebra for Euclidean Geometry |
|
|
79 | (6) |
|
|
79 | (1) |
|
3.4.2 Proving Euclidean Theorems |
|
|
80 | (5) |
|
4 Special Positions of Frameworks and the Grassmann-Cayley Algebra |
|
|
85 | (22) |
|
|
|
4.1 Introduction: the Grassmann-Cayley Algebra and Frameworks |
|
|
85 | (2) |
|
|
87 | (4) |
|
|
87 | (1) |
|
4.2.2 Homogeneous Coordinates and Points at Infinity |
|
|
88 | (1) |
|
4.2.3 Equations on Projective Space |
|
|
88 | (1) |
|
4.2.4 Duality Between Lines and Points in P2 |
|
|
89 | (1) |
|
4.2.5 Grassmannians and Plficker Coordinates |
|
|
89 | (1) |
|
4.2.6 More About Lines in 3-space |
|
|
90 | (1) |
|
4.3 The Bracket Algebra and Rings of Invariants |
|
|
91 | (6) |
|
4.3.1 Group Actions and Invariant Polynomials |
|
|
93 | (1) |
|
4.3.2 Relations Among the Brackets |
|
|
94 | (3) |
|
4.4 The Grassmann-Cayley Algebra |
|
|
97 | (3) |
|
|
97 | (1) |
|
4.4.2 The cross product as a Join |
|
|
98 | (1) |
|
4.4.3 Properties of the Exterior Product |
|
|
99 | (1) |
|
4.4.4 Brackets and the Grassmann-Cayley algebra |
|
|
99 | (1) |
|
|
100 | (1) |
|
|
100 | (7) |
|
|
100 | (1) |
|
4.5.2 The Pure Condition as a Bracket Monomial |
|
|
101 | (2) |
|
4.5.3 White's Algorithm for Multilinear Grassmann-Cayley Factorization |
|
|
103 | (4) |
|
5 From Molecular Distance Geometry to Conformal Geometric Algebra |
|
|
107 | (32) |
|
|
|
5.1 Euclidean Distance Geometry |
|
|
107 | (3) |
|
5.2 The Distance Geometry Theory of Molecular Conformation |
|
|
110 | (5) |
|
5.3 Inductive Geometric Reasoning by Random Sampling |
|
|
115 | (7) |
|
5.4 From Distances to Advanced Euclidean Invariants |
|
|
122 | (7) |
|
5.5 Geometric Reasoning in Euclidean Conformal Geometry |
|
|
129 | (10) |
|
6 Tree-Decomposable and Underconstrained Geometric Constraint Problems |
|
|
139 | (42) |
|
|
|
|
6.1 Introduction, Concepts, and Scope |
|
|
140 | (7) |
|
6.1.1 Geometric Constraint Systems (GCS) |
|
|
141 | (1) |
|
6.1.2 Constraint Graph, Deficit, and Generic Solvability |
|
|
142 | (2) |
|
6.1.3 Instance Solvability |
|
|
144 | (1) |
|
6.1.4 Root Identification and Valid Parameter Ranges |
|
|
144 | (1) |
|
6.1.5 Variational and Serializable Constraint Problems |
|
|
145 | (1) |
|
6.1.6 Triangle-Decomposing Solvers |
|
|
145 | (2) |
|
6.1.7 Scope and Organization |
|
|
147 | (1) |
|
6.2 Geometric Constraint Systems |
|
|
147 | (1) |
|
|
148 | (10) |
|
6.3.1 Geometric Elements and Degrees of Freedom |
|
|
149 | (1) |
|
6.3.2 Geometric Constraints |
|
|
150 | (1) |
|
6.3.3 Compound Geometric Elements |
|
|
150 | (1) |
|
6.3.4 Serializable Graphs |
|
|
151 | (2) |
|
|
153 | (1) |
|
6.3.6 Triangle Decomposability |
|
|
153 | (2) |
|
6.3.7 Generic Solvability and the Church-Rosser Property |
|
|
155 | (2) |
|
|
157 | (1) |
|
|
158 | (10) |
|
6.4.1 2D Triangle-Decomposable Constraint Problems |
|
|
159 | (1) |
|
6.4.2 Root Identification and Order Type |
|
|
160 | (6) |
|
6.4.3 Extended Geometric Vocabulary |
|
|
166 | (2) |
|
6.5 Spatial Geometric Constraints |
|
|
168 | (3) |
|
6.6 Under-Constrained Geometric Constraint Problems |
|
|
171 | (10) |
|
7 Geometric Constraint Decomposition: The General Case |
|
|
181 | (18) |
|
|
|
|
|
181 | (10) |
|
7.1.1 Terminology and Basic Concepts |
|
|
182 | (2) |
|
7.1.2 Triangle-Decomposition |
|
|
184 | (1) |
|
7.1.3 Dulmage-Mendelsohn Decomposition |
|
|
185 | (1) |
|
7.1.4 Assur Decomposition |
|
|
186 | (1) |
|
7.1.5 The Frontier Vertex Algorithm |
|
|
187 | (1) |
|
7.1.6 Canonical Decomposition |
|
|
188 | (3) |
|
7.2 Efficient Realization |
|
|
191 | (4) |
|
7.2.1 Numerical Instability of Rigid Body Incidence and Seam Matroid |
|
|
191 | (1) |
|
7.2.2 Optimal Parameterization in Recombination |
|
|
192 | (2) |
|
7.2.3 Reconciling Conflicting Combinatorial Preprocessors |
|
|
194 | (1) |
|
7.3 Handling Under-and Over-Constrained Systems |
|
|
195 | (1) |
|
7.4 User Intervention in DR-Planning |
|
|
195 | (2) |
|
7.4.1 Root Selection and Navigation |
|
|
195 | (1) |
|
7.4.2 Changing Constraint Parameters |
|
|
196 | (1) |
|
7.4.3 Dynamic Maintenance |
|
|
196 | (1) |
|
|
197 | (2) |
II Distance Geometry, Real Algebraic Geometry, and Configuration Spaces |
|
199 | (88) |
|
8 Dimensional and Universal Rigidities of Bar Frameworks |
|
|
201 | (12) |
|
|
|
201 | (1) |
|
8.2 Stress Matrices and Gale Matrices |
|
|
202 | (2) |
|
8.3 Dimensional Rigidity Results |
|
|
204 | (2) |
|
|
206 | (3) |
|
|
206 | (1) |
|
8.4.2 Universal Rigidity Basic Results |
|
|
207 | (1) |
|
8.4.3 Universal Rigidity for Special Graphs |
|
|
208 | (1) |
|
|
209 | (4) |
|
9 Computations of Metric/Cut Polyhedra and Their Relatives |
|
|
213 | (20) |
|
|
|
|
|
213 | (2) |
|
9.2 Metric and Cut Cones and Polytopes |
|
|
215 | (1) |
|
9.3 Hypermetric Cone and Hypermetric Polytope |
|
|
216 | (2) |
|
9.4 Cut and Metric Polytopes of Graphs |
|
|
218 | (4) |
|
9.5 Quasi-Semimetric Polyhedra |
|
|
222 | (2) |
|
|
224 | (1) |
|
9.7 Supermetric and Hemimetric Cones |
|
|
225 | (3) |
|
9.8 Software Computations |
|
|
228 | (5) |
|
10 Cayley Configuration Spaces |
|
|
233 | (20) |
|
|
|
|
|
|
233 | (2) |
|
10.1.1 Euclidean Distance Cone |
|
|
234 | (1) |
|
|
235 | (1) |
|
|
235 | (1) |
|
10.4 Characterizing 2D Graphs with Convex Cayley Configuration Spaces |
|
|
236 | (2) |
|
10.5 Extension to other Norms, Higher Dimensions, and Flattenability |
|
|
238 | (7) |
|
10.5.1 Computing Bounds of Convex Cayley Configuration Spaces in 3D for Partial 3-Trees |
|
|
240 | (1) |
|
10.5.2 Some Background on the Distance Cone |
|
|
240 | (2) |
|
10.5.3 Genericity and Independence in the Context of Flattenability |
|
|
242 | (3) |
|
10.6 Efficient Realization through Optimal Cayley Modification |
|
|
245 | (1) |
|
10.7 Cayley Configuration Spaces of 1-Dof Tree-Decomposable Linkages in 2D |
|
|
246 | (4) |
|
|
250 | (3) |
|
11 Constraint Varieties in Mechanism Science |
|
|
253 | (20) |
|
|
|
|
|
253 | (2) |
|
11.1.1 Linkages and Joints |
|
|
254 | (1) |
|
11.1.2 Base and End-Effector Frame |
|
|
255 | (1) |
|
11.2 Mechanisms and Algebraic Varieties |
|
|
255 | (7) |
|
11.2.1 Geometric Constraint Equations |
|
|
256 | (1) |
|
|
256 | (2) |
|
|
258 | (2) |
|
11.2.4 Analyzing Mechanisms via Algebraic Varieties |
|
|
260 | (2) |
|
|
262 | (4) |
|
11.3.1 Direct and Inverse Kinematics |
|
|
264 | (1) |
|
11.3.2 Synthesis of Open and Closed Serial Chains |
|
|
264 | (2) |
|
11.3.3 Singularities and Path Planning |
|
|
266 | (1) |
|
|
266 | (1) |
|
11.4 Parallel Manipulators |
|
|
266 | (7) |
|
11.4.1 Direct and Inverse Kinematics |
|
|
267 | (1) |
|
11.4.2 Singularities and Self-Motions |
|
|
268 | (1) |
|
|
269 | (4) |
|
12 Real Algebraic Geometry for Geometric Constraints |
|
|
273 | (14) |
|
|
|
273 | (2) |
|
12.2 Ideals and Varieties |
|
|
275 | (1) |
|
|
276 | (1) |
|
12.4 Structure of Algebraic Varieties |
|
|
277 | (3) |
|
|
278 | (1) |
|
12.4.2 Smooth and Singular Points |
|
|
279 | (1) |
|
|
279 | (1) |
|
12.5 Real Algebraic Geometry |
|
|
280 | (9) |
|
12.5.1 Algebraic Relaxation |
|
|
280 | (1) |
|
12.5.2 Semi-Algebraic Sets |
|
|
281 | (2) |
|
|
283 | (4) |
III Geometric Rigidty |
|
287 | (88) |
|
|
289 | (10) |
|
|
|
289 | (1) |
|
|
289 | (1) |
|
13.3 Co-Dimension 2 Results-Bricard Octahedra |
|
|
290 | (2) |
|
|
292 | (7) |
|
|
299 | (18) |
|
|
|
|
299 | (1) |
|
14.2 Ten segrity Frameworks |
|
|
300 | (5) |
|
14.2.1 Combinatorics of Tensegrities |
|
|
304 | (1) |
|
14.2.2 Geometric Interpretations |
|
|
304 | (1) |
|
|
304 | (1) |
|
|
305 | (4) |
|
14.3.1 Global Rigidity and Stress Matrices |
|
|
306 | (1) |
|
14.3.2 Universal and Dimensional Rigidity |
|
|
306 | (2) |
|
14.3.3 Operations on Tensegrities |
|
|
308 | (1) |
|
14.4 Examples and Applications |
|
|
309 | (9) |
|
|
310 | (1) |
|
|
311 | (6) |
|
15 Geometric Conditions of Rigidity in Nongeneric Settings |
|
|
317 | (24) |
|
|
|
318 | (1) |
|
15.2 Configuration Space of Tensegrities and its Stratification |
|
|
319 | (3) |
|
|
320 | (1) |
|
15.2.2 Definition of a Tensegrity |
|
|
320 | (1) |
|
15.2.3 Stratification of the Space of Tensegrities |
|
|
321 | (1) |
|
15.2.4 Tensegrities on 4 Points in the Plane |
|
|
321 | (1) |
|
15.3 Extended Cayley Algebra and the Corresponding Geometric Relations |
|
|
322 | (3) |
|
15.3.1 Extended Cayley Algebra |
|
|
322 | (2) |
|
15.3.2 Geometric Relations on Configuration Spaces of Points and Lines |
|
|
324 | (1) |
|
15.4 Geometric Conditions of Infinitesimal Flexibility in Terms of Extended Cayley Algebra |
|
|
325 | (3) |
|
15.4.1 Examples in the Plane |
|
|
325 | (1) |
|
15.4.2 Frameworks in General Position |
|
|
326 | (1) |
|
15.4.3 Non-parallelizable Tensegrities |
|
|
326 | (1) |
|
15.4.4 Geometric Conditions for Existence Non-parallelizable Tensegrities |
|
|
327 | (1) |
|
15.4.5 Conjecture on Strong Geometric Conditions for Tensegrities |
|
|
327 | (1) |
|
|
328 | (2) |
|
15.6 Algorithm to Write Geometric Conditions of Realizability of Generic Tensegrities |
|
|
330 | (11) |
|
15.6.1 Framed Cycles in General Gosition |
|
|
330 | (1) |
|
15.6.1.1 Basic Definitions |
|
|
330 | (1) |
|
15.6.1.2 Geometric Conditions for Framed Cycles |
|
|
331 | (1) |
|
15.6.1.3 Geometric Conditions for Trivalent Graphs |
|
|
332 | (1) |
|
15.6.2 Resolution Schemes |
|
|
332 | (1) |
|
15.6.2.1 Definition of Resolution Schemes |
|
|
332 | (1) |
|
15.6.2.2 Resolution of a Framework |
|
|
333 | (1) |
|
15.6.2.3 Hc13-Surgeries on Completely Generic Resolution Schemes |
|
|
333 | (2) |
|
15.6.3 Construction of Framing for Pairs of Leaves in Completely Generic Resolution Schemes |
|
|
335 | (1) |
|
15.6.4 Framed Cycles Associated to Generic Resolutions of a Graph |
|
|
335 | (1) |
|
15.6.5 Natural Correspondences Between EG(P) and the Set of all Resolutions for G(P) |
|
|
336 | (1) |
|
15.6.6 Techniques to Construct Geometric Conditions Defining Tensegrities |
|
|
336 | (5) |
|
16 Generic Global Rigidity in General Dimension |
|
|
341 | (10) |
|
|
|
341 | (2) |
|
16.2 Connelly's Sufficiency Theorem |
|
|
343 | (2) |
|
16.3 Hendrickson's Necessary Conditions |
|
|
345 | (2) |
|
|
346 | (1) |
|
16.4 Necessity of Connelly's Condition |
|
|
347 | (1) |
|
16.5 Randomized Algorithm for Testing Generic Global Rigidity |
|
|
347 | (1) |
|
|
348 | (1) |
|
|
349 | (2) |
|
17 Change of Metrics in Rigidity Theory |
|
|
351 | (24) |
|
|
|
|
351 | (1) |
|
17.2 Projective Transfer of Infinitesimal Rigidity |
|
|
352 | (9) |
|
17.2.1 Coning and Spherical Frameworks |
|
|
353 | (2) |
|
|
355 | (1) |
|
17.2.2.1 Spherical to Affine Transfer |
|
|
357 | (1) |
|
17.2.3 Equilibrium Stresses |
|
|
358 | (1) |
|
17.2.4 Point-Hyperplane Frameworks |
|
|
359 | (1) |
|
17.2.5 Tensegrity Frameworks |
|
|
360 | (1) |
|
17.3 Projective Frameworks |
|
|
361 | (2) |
|
17.4 Pseudo-Euclidean Geometries |
|
|
363 | (1) |
|
17.4.1 Hyperbolic and Minkowski Spaces |
|
|
364 | (1) |
|
17.5 Transfer of Symmetric Infinitesimal Rigidity |
|
|
364 | (2) |
|
17.5.1 Symmetric Frameworks |
|
|
365 | (1) |
|
|
366 | (4) |
|
17.6.1 Universal Rigidity |
|
|
368 | (1) |
|
17.6.2 Projective Transformations |
|
|
369 | (1) |
|
17.6.3 Pseudo-Euclidean Metrics |
|
|
370 | (1) |
|
17.7 Summary and Related Topics |
|
|
370 | (5) |
IV Combinatorial Rigidity |
|
375 | (192) |
|
|
377 | (36) |
|
|
|
18.1 Rigidity of Bar and Joint Frameworks |
|
|
378 | (8) |
|
18.1.1 Rigidity Matrix and Augmented Rigidity Matrices |
|
|
380 | (2) |
|
18.1.2 Rigidity Matrix as a Transformation |
|
|
382 | (2) |
|
18.1.3 The Infinitesimal Rigidity Matroid of a Framework |
|
|
384 | (2) |
|
18.2 Abstract Rigidity Matroids |
|
|
386 | (9) |
|
18.2.1 Characterizations of A2 and (A2)1 |
|
|
387 | (2) |
|
18.2.2 The 2-Dimensional Generic Rigidity Matroid |
|
|
389 | (1) |
|
|
390 | (1) |
|
18.2.4 Rigid Components of g2(G) |
|
|
391 | (2) |
|
18.2.5 Representability of g2 (n) |
|
|
393 | (2) |
|
18.3 Rigidity and Connectivity |
|
|
395 | (18) |
|
|
396 | (1) |
|
18.3.2 Tree Decomposition Theorems |
|
|
397 | (1) |
|
18.3.2.1 Computation of Independence in g2 (n) |
|
|
398 | (2) |
|
18.3.3 Pinned Frameworks and Assur Decomposition |
|
|
400 | (1) |
|
18.3.3.1 Isostatic Pinned Framework |
|
|
400 | (6) |
|
18.3.4 Body and Pin Structures |
|
|
406 | (1) |
|
18.3.5 Rigidity of Random Graphs |
|
|
407 | (6) |
|
19 Inductive Constructions for Combinatorial Local and Global Rigidity |
|
|
413 | (22) |
|
|
|
|
413 | (1) |
|
|
414 | (8) |
|
19.2.1 Inductive Operations on Frameworks |
|
|
416 | (2) |
|
19.2.2 Recursive Characterizations of Graphs |
|
|
418 | (3) |
|
19.2.3 Combinatorial Characterizations of Rigidity |
|
|
421 | (1) |
|
19.3 Body-Bar, Body-Hinge, Molecular, etc. |
|
|
422 | (2) |
|
19.3.1 Geometry and Combinatorics |
|
|
423 | (1) |
|
|
424 | (1) |
|
19.4 Further Rigidity Contexts |
|
|
424 | (5) |
|
19.4.1 Frameworks with Symmetry |
|
|
425 | (1) |
|
19.4.2 Infinite Frameworks |
|
|
425 | (1) |
|
|
426 | (2) |
|
|
428 | (1) |
|
19.4.5 Applications of Rigidity Techniques |
|
|
428 | (1) |
|
19.4.6 Direction-Length Frameworks and CAD |
|
|
428 | (1) |
|
19.4.7 Nearly Generic Frameworks |
|
|
428 | (1) |
|
|
429 | (6) |
|
20 Rigidity of Body-Bar-Hinge Frameworks |
|
|
435 | (26) |
|
|
|
20.1 Rigidity of Body-Bar-Hinge Frameworks |
|
|
436 | (7) |
|
20.1.1 Body-Bar Frameworks |
|
|
436 | (4) |
|
20.1.2 Body-Hinge Frameworks |
|
|
440 | (2) |
|
20.1.3 Body-Bar-Hinge Frameworks |
|
|
442 | (1) |
|
|
443 | (1) |
|
20.2.1 Body-Bar Frameworks |
|
|
443 | (1) |
|
20.2.2 Body-Hinge Frameworks |
|
|
443 | (1) |
|
20.3 Other Related Models |
|
|
444 | (6) |
|
20.3.1 Plate-Bar Frameworks |
|
|
445 | (1) |
|
20.3.2 Identified Body-Hinge Frameworks |
|
|
445 | (1) |
|
20.3.3 Panel-Hinge Frameworks |
|
|
446 | (1) |
|
20.3.4 Molecular Frameworks |
|
|
446 | (2) |
|
20.3.5 Body-Pin Frameworks |
|
|
448 | (1) |
|
20.3.6 Body-Bar Frameworks with Boundaries |
|
|
449 | (1) |
|
|
450 | (1) |
|
20.4 Generic Global Rigidity |
|
|
450 | (2) |
|
20.4.1 Body-Bar Frameworks |
|
|
450 | (1) |
|
20.4.2 Body-Hinge Frameworks |
|
|
451 | (1) |
|
20.4.3 Counterexamples to Hendrickson's Conjecture |
|
|
452 | (1) |
|
20.5 Graph Theoretical Aspects |
|
|
452 | (10) |
|
20.5.1 Tree Packing and Connectivity |
|
|
453 | (2) |
|
|
455 | (1) |
|
20.5.3 Constructive Characterizations |
|
|
455 | (1) |
|
|
455 | (6) |
|
21 Global Rigidity of Two-Dimensional Frameworks |
|
|
461 | (26) |
|
|
|
|
|
462 | (1) |
|
21.2 Conditions for Global Rigidity |
|
|
463 | (1) |
|
21.2.1 Stress Matrix Characterization in Rd |
|
|
463 | (1) |
|
21.2.2 Hendrickson's Necessary Conditions for Global Rigidity |
|
|
464 | (1) |
|
|
464 | (2) |
|
21.4 Characterization of Global Rigidity in RI and R2 |
|
|
466 | (1) |
|
21.5 The Rigidity Matroid |
|
|
467 | (3) |
|
21.5.1 Rd-Independent Graphs |
|
|
468 | (1) |
|
|
468 | (1) |
|
21.5.3 Rd-Connected Graphs |
|
|
468 | (2) |
|
21.6 Special Families of Graphs |
|
|
470 | (4) |
|
21.6.1 Highly Connected Graphs |
|
|
470 | (1) |
|
21.6.2 Vertex-Redundantly Rigid Graphs |
|
|
471 | (1) |
|
21.6.3 Vertex Transitive Graphs |
|
|
471 | (1) |
|
21.6.4 Graphs of Large Minimum Degree |
|
|
472 | (1) |
|
|
472 | (1) |
|
|
473 | (1) |
|
21.6.7 Squares of Gaphs, Line Graphs, and Zeolites |
|
|
473 | (1) |
|
|
474 | (5) |
|
21.7.1 Globally Linked Pairs of Vertices |
|
|
474 | (2) |
|
21.7.2 Globally Rigid Clusters |
|
|
476 | (1) |
|
21.7.3 Globally Loose Pairs |
|
|
476 | (1) |
|
21.7.4 Uniquely Localizable Vertices |
|
|
477 | (1) |
|
21.7.5 The Number of Non-Equivalent Realizations |
|
|
477 | (1) |
|
21.7.6 Stability Lemma and Neighborhood Results |
|
|
478 | (1) |
|
21.8 Direction Constraints |
|
|
479 | (3) |
|
|
480 | (1) |
|
21.8.2 Direction-Length Global Rigidity |
|
|
481 | (1) |
|
|
482 | (1) |
|
21.10 Optimization Problems |
|
|
482 | (5) |
|
|
487 | (18) |
|
|
|
|
487 | (3) |
|
22.1.1 Motivation from CAD |
|
|
488 | (1) |
|
22.1.2 Motivation from Automated Deduction in Geometry (ADG) and Theorem Proving |
|
|
488 | (1) |
|
22.1.3 Constraint Graphs and Frameworks |
|
|
488 | (2) |
|
22.2 Point-Line Graphs and Frameworks |
|
|
490 | (6) |
|
22.2.1 Point-Line Frameworks and the Rigidity Map |
|
|
491 | (1) |
|
22.2.2 The Rigidity Matrix |
|
|
492 | (2) |
|
22.2.3 The Rigidity Matroid |
|
|
494 | (1) |
|
22.2.4 Affine Properties of the Point-Line Rigidity Matrix |
|
|
494 | (1) |
|
22.2.5 Fixed-Slope Point-Line Frameworks |
|
|
495 | (1) |
|
22.3 Characterization of the Generic Rigidity Matroid for Point-Line Frameworks in R2 |
|
|
496 | (6) |
|
22.3.1 A Count Matroid for Point-Line Graphs |
|
|
496 | (3) |
|
22.3.2 A Characterization of Independence in MPL(G) when G is Naturally Bi- partite |
|
|
499 | (2) |
|
22.3.3 A Characterization of Independence in MPL(G) |
|
|
501 | (1) |
|
22.3.4 The Rank Function for MPL(G) |
|
|
501 | (1) |
|
|
502 | (1) |
|
22.4.1 Point-Line Frameworks in Rd |
|
|
502 | (1) |
|
22.4.2 Point-Hyperplane Frameworks in Rd |
|
|
502 | (1) |
|
22.5 Direction-Length Frameworks |
|
|
503 | (2) |
|
23 Generic Rigidity of Body-and-Cad Frameworks |
|
|
505 | (20) |
|
|
|
505 | (1) |
|
23.2 Algebraic Body-and-Cad Rigidity Theory |
|
|
506 | (7) |
|
|
506 | (1) |
|
23.2.2 Getting to Know Body-and-Cad Frameworks |
|
|
507 | (2) |
|
23.2.3 Formalization of the Algebraic Setting |
|
|
509 | (3) |
|
23.2.4 Building a 3D Body-and-Cad Framework |
|
|
512 | (1) |
|
23.3 Infinitesimal Body-and-Cad Rigidity Theory |
|
|
513 | (4) |
|
|
513 | (2) |
|
23.3.2 The Pattern of the Rigidity Matrix |
|
|
515 | (1) |
|
23.3.2.1 Primitive Angular and Blind Constraints |
|
|
515 | (2) |
|
|
517 | (1) |
|
23.4 Combinatorial Body-and-Cad Rigidity Theory |
|
|
517 | (5) |
|
|
517 | (1) |
|
23.4.2 The Rigidity Matroid and Sparsity |
|
|
518 | (1) |
|
23.4.3 Characterizing Generic Body-and-Cad Rigidity |
|
|
518 | (1) |
|
|
519 | (3) |
|
|
522 | (3) |
|
24 Rigidity with Polyhedral Norms |
|
|
525 | (18) |
|
|
|
525 | (2) |
|
|
526 | (1) |
|
24.1.2 Statement of the Problem |
|
|
527 | (1) |
|
24.2 Rigidity of Frameworks |
|
|
527 | (8) |
|
24.2.1 Points of Differentiability |
|
|
527 | (1) |
|
24.2.2 The Rigidity Matrix |
|
|
528 | (1) |
|
|
529 | (1) |
|
|
530 | (1) |
|
|
530 | (1) |
|
|
531 | (4) |
|
|
535 | (8) |
|
24.3.1 Sparsity Counts and Tree Decompositions |
|
|
536 | (1) |
|
|
536 | (1) |
|
24.3.3 Symmetric Isostatic Placements |
|
|
537 | (2) |
|
24.3.4 Symmetric Tree Decompositions |
|
|
539 | (4) |
|
25 Combinatorial Rigidity of Symmetric and Periodic Frameworks |
|
|
543 | (24) |
|
|
|
543 | (1) |
|
25.2 Incidentally Symmetric Isostatic Frameworks |
|
|
544 | (5) |
|
|
544 | (1) |
|
25.2.2 Symmetry-Adapted Maxwell Counts |
|
|
545 | (3) |
|
25.2.3 Characterizations of Symmetric Isostatic Graphs |
|
|
548 | (1) |
|
25.3 Forced-Symmetric Frameworks |
|
|
549 | (5) |
|
|
549 | (2) |
|
25.3.2 Symmetric Motions and the Orbit Rigidity Matrix |
|
|
551 | (2) |
|
25.3.3 Characterizations of Forced-Symmetric Rigid Graphs |
|
|
553 | (1) |
|
25.4 Incidentally Symmetric Infinitesimally Rigid Frameworks |
|
|
554 | (5) |
|
|
554 | (2) |
|
25.4.2 Phase-Symmetric Orbit Rigidity Matrices |
|
|
556 | (1) |
|
25.4.3 Characterizations of Symmetric Infinitesimally Rigid Graphs |
|
|
557 | (2) |
|
|
559 | (8) |
|
|
559 | (1) |
|
25.5.2 Maxwell Counts for Periodic Rigidity |
|
|
560 | (1) |
|
25.5.3 Characterizations of Periodic Rigid Graphs |
|
|
561 | (6) |
Index |
|
567 | |