Atnaujinkite slapukų nuostatas

El. knyga: Handbook of Optics, Third Edition Volume IV: Optical Properties of Materials, Nonlinear Optics, Quantum Optics (set)

  • Formatas: 1152 pages
  • Išleidimo metai: 06-Oct-2009
  • Leidėjas: McGraw-Hill Professional
  • Kalba: eng
  • ISBN-13: 9780071629294
Kitos knygos pagal šią temą:
  • Formatas: 1152 pages
  • Išleidimo metai: 06-Oct-2009
  • Leidėjas: McGraw-Hill Professional
  • Kalba: eng
  • ISBN-13: 9780071629294
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. The most comprehensive and up-to-date optics resource availablePrepared under the auspices of the Optical Society of America, the five carefully architected and cross-referenced volumes of the Handbook of Optics, Third Edition, contain everything a student, scientist, or engineer requires to actively work in the field. From the design of complex optical systems to world-class research and development methods, this definitive publication provides unparalleled access to the fundamentals of the discipline and its greatest minds.

Individual chapters are written by the world's most renowned experts who explain, illustrate, and solve the entire field of optics. Each volume contains a complete chapter listing for the entire Handbook, extensive chapter glossaries, and a wealth of references. This pioneering work offers unprecedented coverage of optics data, techniques, and applications.

Volume IV covers optical properties of materials, nonlinear optics, and quantum optics.
Contributors xiii
Editors' Preface xxi
Preface to Volume IV xxiii
Glossary and Fundamental Constants xxv
Part
1. Properties
Chapter
1. Optical Properties of Water
Curtis D. Mobley
1.3
1.1 Introduction
1.3
1.2 Terminology, Notation, and Definitions
1.3
1.3 Radiometric Quantities Useful in Hydrologic Optics
1.4
1.4 Inherent Optical Properties
1.9
1.5 Apparent Optical Properties
1.12
1.6 The Optically Significant Constituents of Natural Waters
1.13
1.7 Particle Size Distributions
1.15
1.8 Electromagnetic Properties of Water
1.16
1.9 Index of Refraction
1.18
1.10 Measurement of Absorption
1.20
1.11 Absorption by Pure Sea Water
1.21
1.12 Absorption by Dissolved Organic Matter
1.22
1.13 Absorption by Phytoplankton
1.23
1.14 Absorption by Organic Detritus
1.25
1.15 Bio-Optical Models for Absorption
1.27
1.16 Measurement of Scattering
1.29
1.17 Scattering by Pure Water and by Pure Sea Water
1.30
1.18 Scattering by Particles
1.30
1.19 Wavelength Dependence of Scattering: Bio-Optical Models
1.35
1.20 Beam Attenuation
1.40
1.21 Diffuse Attenuation and Jerlov Water Types
1.42
1.22 Irradiance Reflectance and Remote Sensing
1.46
1.23 Inelastic Scattering and Polarization
1.47
1.24 Acknowledgments
1.50
1.25 References
1.50
Chapter
2. Properties of Crystals and Glasses
William J. Tropf, Michael E. Thomas, and Eric W. Rogala
2.1
2.1 Glossary
2.1
2.2 Introduction
2.3
2.3 Optical Materials
2.4
2.4 Properties of Materials
2.5
2.5 Properties Tables
2.36
2.6 References
2.77
Chapter
3. Polymeric Optics
John D. Lytle
3.1
3.1 Glossary
3.1
3.2 Introduction
3.1
3.3 Forms
3.2
3.4 Physical Properties
3.2
3.5 Optical Properties
3.5
3.6 Optical Design
3.7
3.7 Processing
3.11
3.8 Coatings
3.17
3.9 References
3.18
Chapter
4. Properties of Metals
Roger A. Paquin
4.1
4.1 Glossary
4.1
4.2 Introduction
4.2
4.3 Summary Data
4.11
4.4 References
4.70
Chapter
5. Optical Properties of Semiconductors
David G. Seiler, Stefan Zollner, Alain C. Diebold, and Paul M. Amirtharaj
5.1
5.1 Glossary
5.1
5.2 Introduction
5.3
5.3 Optical Properties
5.8
5.4 Measurement Techniques
5.56
5.5 Acknowledgments
5.83
5.6 Summary and Conclusions
5.83
5.7 References
5.91
Chapter
6. Characterization and Use of Black Surfaces for Optical Systems
Stephen M. Pompea and Robert P Breault
6.1
6.1 Introduction
6.1
6.2 Selection Process for Black Baffle Surfaces in Optical Systems
6.10
6.3 The Creation of Black Surfaces for Specific Applications
6.13
6.4 Environmental Degradationof Black Surfaces
6.16
6.5 Optical Characterization of Black Surfaces
6.18
6.6 Surfaces for Ultraviolet and Far-Infrared Applications
6.21
6.7 Survey of Surfaces with Optical Data
6.34
6.8 Paints
6.35
6.9 Conclusions
6.59
6.10 Acknowledgments
6.59
6.11 References
6.60
6.12 Further Readings
6.67
Chapter
7. Optical Properties of Films and Coatings
Jerzy A . Dobrowolski
7.1
7.1 Introduction
7.1
7.2 Theory and Design of Optical Thin-Film Coatings
7.5
7.3 Thin-Film Manufacturing Considerations
7.10
7.4 Measurements on Optical Coatings
7.12
7.5 Antireflection Coatings
7.15
7.6 Two-Material Periodic Multilayers Theory
7.32
7.7 Multilayer Reflectors-Experimental Results
7.39
7.8 Cutoff, Heat-Control, and Solar-Cell Cover Filters
7.53
7.9 Beam Splitters and Neutral Filters
7.61
7.10 Interference Polarizers and Polarizing Beam Splitters
7.69
7.11 Bandpass Filters
7.73
7.12 High Performance Optical Multilayer Coatings
7.96
7.13 Multilayers for Two or Three Spectral Regions
7.98
7.14 Phase Coatings
7.101
7.15 Interference Filters with Low Reflection
7.104
7.16 Reflection Filters and Coatings
7.106
7.17 Special Purpose Coatings
7.113
7.18 References
7.114
Chapter
8. Fundamental Optical Properties of Solids
Alan Miller
8.1
8.1 Glossary
8.1
8.2 Introduction
8.3
8.3 Propagation of Light in Solids
8.4
8.4 Dispersion Relations
8.14
8.5 Lattice Interactions
8.16
8.6 Free Electron Properties
8.21
8.7 Band Structures and Interband Transitions
8.24
8.8 References
8.32
Chapter
9. Photonic Bandgap Materials
Pierre R. Villeneuve
9.1
9.1 Glossary
9.1
9.2 Introduction
9.2
9.3 Maxwell's Equations
9.2
9.4 Three-Dimensional Photonic Crystals
9.4
9.5 Microcavities in Three-Dimensional Photonic Crystals
9.6
9.6 Microcavities in Photonic Crystals with Two-Dimensional Periodicity
9.8
9.7 Waveguides
9.12
9.8 Conclusion
9.17
9.9 References
9.18
Part
2. Nonlinear Optics
Chapter
10. Nonlinear Optics
Chung L. Tang
10.3
10.1 Glossary
10.3
10.2 Introduction
10.4
10.3 Basic Concepts
10.5
10.4 Material Considerations
10.19
10.5 Appendix
10.21
10.6 References
10.23
Chapter
11. Coherent Optical Transients
Paul R. Berman and Duncan G. Steel
11.1
11.1 Glossary
11.1
11.2 Introduction
11.2
11.3 Optical Bloch Equations
11.3
11.4 Maxwell-Bloch Equations
11.6
11.5 Free Polarization Decay
11.7
11.6 Photon Echo
11.11
11.7 Stimulated Photon Echo
11.15
11.8 Phase Conjugate Geometry and Optical Ramsey Fringes
11.19
11.9 Two-Photon Transitions and Atom Interferometry
11.22
11.10 Chirped Pulse Excitation
11.25
11.11 Experimental Considerations
11.26
11.12 Conclusion
11.28
11.13 References
11.28
Chapter
12. Photorefractive Materials and Devices
Mark Cronin-Golomb and Marvin Klein
12.1
12.1 Introduction
12.1
12.2 Materials
12.10
12.3 Devices
12.28
12.4 References
12.38
12.5 Further Reading
12.45
Chapter
13. Optical Limiting
David J. Hagan
13.1
13.1 Introduction
13.1
13.2 Basic Principles of Passive Optical Limiting
13.4
13.3 Examples of Passive Optical Limiting in Specific Materials
13.9
13.4 References
13.13
Chapter
14. Electromagnetically Induced Transparency
Jonathan P. Marangos and Thomas Halfmann
14.1
14.1 Glossary
14.1
14.2 Introduction
14.2
14.3 Coherence in Two- and Three-Level Atomic Systems
14.4
14.4 The Basic Physical Concept of Electromagnetically Induced Transparency
14.5
14.5 Manipulation of Optical Properties by Electromagnetically Induced Transparency
14.10
14.6 Electromagnetically Induced Transparency, Driven by Pulsed Lasers
14.15
14.7 Steady State Electromagnetically Induced Transparency, Driven by CW Lasers
14.16
14.8 Gain without Inversion and Lasing without Inversion
14.18
14.9 Manipulation of the Index of Refraction in Dressed Atoms
14.19
14.10 Pulse Propagation Effects
14.20
14.11 Ultraslow Light Pulses
14.22
14.12 Nonlinear Optical Frequency Conversion
14.24
14.13 Nonlinear Optics at Maximal Atomic Coherence
14.28
14.14 Nonlinear Optics at the Few Photon Level
14.32
14.15 Electromagnetically Induced Transparency in Solids
14.33
14.16 Conclusion
14.36
14.17 Further Reading
14.36
14.18 References
14.37
Chapter
15. Stimulated Raman and Brillouin Scattering
John Reintjes and Mark Bashkansky
15.1
15.1 Introduction
15.1
15.2 Raman Scattering
15.1
15.3 Stimulated Brillouin Scattering
15.43
15.4 References
15.54
15.5 Additional References
15.60
Chapter
16. Third-Order Optical Nonlinearities
Mansoor Sheik-Bahae and Michael P. Hasselbeck
16.1
16.1 Introduction
16.1
16.2 Quantum Mechanical Picture
16.4
16.3 Nonlinear Absorption and Nonlinear Refraction
16.7
16.4 Kramers-Kronig Dispersion Relations
16.9
16.5 Optical Kerr Effect
16.11
16.6 Third-Harmonic Generation
16.14
16.7 Stimulated Scattering
16.14
16.8 Two-Photon Absorption
16.19
16.9 Effective Third-Order Nonlinearities; Cascaded Processes
16.20
16.10 Effective Third-Order Nonlinearities; Cascaded Processes
16.22
16.11 Propagation Effects
16.24
16.12 Common Experimental Techniques and Applications
16.26
16.13 References
16.31
Chapter
17. Continuous-Wave Optical Parametric Oscillators
Majid Ebrahim-Zadeh
17.1
17.1 Introduction
17.1
17.2 Continuous-Wave Optical Parametric Oscillators
17.2
17.3 Applications
17.21
17.4 Summary
17.29
17.5 References
17.31
Chapter
18. Nonlinear Optical Processes for Ultrashort Pulse Generation
Uwe Siegner and Ursula Keller
18.1
18.1 Glossary
18.1
18.2 Abbreviations
18.3
18.3 Introduction
18.3
18.4 Saturable Absorbers: Macroscopic Description
18.5
18.5 Kerr Effect
18.11
18.6 Semiconductor Ultrafast Nonlinearities: Microscopic Processes
18.15
18.7 References
18.23
Chapter
19. Laser-Induced Damage to Optical Materials
Marion J. Soileau
19.1
19.1 Introduction
19.1
19.2 Practical Estimates
19.2
19.3 Surface Damage
19.2
19.4 Package-Induced Damage
19.4
19.5 Nonlinear Optical Effects
19.5
19.6 Avoidance of Damage
19.5
19.7 Fundamental Mechanisms
19.6
19.8 Progress in Measurements of Critical NLO Parameters
19.9
19.9 References
19.11
Part
3. Quantum and Molecular Optics
Chapter
20. Laser Cooling and Trapping of Atoms
Harold J. Metcalf and Peter van der Straten
20.3
20.1 Introduction
20.3
20.2 General Properties Concerning Laser Cooling
20.4
20.3 Theoretical Description
20.6
20.4 Slowing Atomic Beams
20.11
20.5 Optical Molasses
20.13
20.6 Cooling Below the Doppler Limit
20.17
20.7 Trapping of Neutral Atoms
20.21
20.8 Applications
20.26
20.9 References
20.39
Chapter
21. Strong Field Physics
Todd Ditmire
21.1
21.1 Glossary
21.1
21.2 Introduction and History
21.2
21.3 Laser Technology Used in Strong Field Physics
21.4
21.4 Strong Field Interactions with Single Electrons
21.5
21.5 Strong Field Interactions with Atoms
21.10
21.6 Strong Field Interactions with Molecules
21.22
21.7 Strong Field Nonlinear Optics in Gases
21.27
21.8 Strong Field Interactions with Clusters
21.31
21.9 Strong Field Physics in Underdense Plasmas
21.36
21.10 Strong Field Physics at Surfaces of Overdense Plasmas
21.46
21.11 Applications of Strong Field Interactions with Plasmas
21.52
21.12 References
21.55
Chapter
22. Slow Light Propagation in Atomic and Photonic Media
Jacob B. Khurgin
22.1
22.1 Glossary
22.1
22.2 Introduction
22.2
22.3 Atomic Resonance
22.2
22.4 Bandwidth Limitations in Atomic Schemes
22.9
22.5 Photonic Resonance
22.9
22.6 Slow Light in Optical Fibers
22.13
22.7 Conclusion
22.15
22.8 References
22.16
Chapter
23. Quantum Entanglement in Optical Interferometry
Hwang Lee, Christoph F. Wildfeuer, Sean D. Huver, and Jonathan P. Dowling
23.1
23.1 Introduction
23.1
23.2 Shot-Noise Limit
23.4
23.3 Heisenberg Limit
23.6
23.4 "Digital" Approaches
23.7
23.5 NOOn State
23.9
23.6 Quantum Imaging
23.13
23.7 Toward Quantum Remote Sensing
23.14
23.8 References
23.15
Index I.1
The Optical Society of America is a professional society dedicated to serving optics professionals and academics, in the U.S. and around the world.



Editor-in-Chief: Dr. Michael Bass is professor emeritus at the University of Central Florida's Center for Research and Education in Optics and Lasers (CREOL).

Associate Editors: Dr. Casimer M. DeCusatis is a distinguished engineer and technical executive with IBM Corporation.

Dr. Jay Enoch is dean emeritus at the School of Optometry at the University of California, Berkeley.

Dr. Vasudevan Lakshminarayanan is professor of Optometry and Vision Science at the University of Waterloo, Ontario.

Dr. Guifang Li is professor of Optics and Electrical/Computing Engineering at the University of Central Florida.

Dr. Carolyn MacDonald is a professor at the University at Albany, and director of the Center for X-ray Optics.

Dr. Virendra N. Mahajan is a distinguished engineer at The Aerospace Corporation.

Dr. Eric Van Stryland is a professor of The College of Optics and Photonics, University of Central Florida.