Atnaujinkite slapukų nuostatas

El. knyga: Handbook of Organic Materials for Optical and (Opto)Electronic Devices: Properties and Applications

Edited by (Professor, Department of Physics, Oregon State University, USA)
Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Small molecules and conjugated polymers, the two main types of organic materials used for optoelectronic and photonic devices, can be used in a number of applications including organic light-emitting diodes, photovoltaic devices, photorefractive devices and waveguides. Organic materials are attractive due to their low cost, the possibility of their deposition from solution onto large-area substrates, and the ability to tailor their properties. The Handbook of organic materials for optical and (opto)electronic devices provides an overview of the properties of organic optoelectronic and nonlinear optical materials, and explains how these materials can be used across a range of applications.Parts one and two explore the materials used for organic optoelectronics and nonlinear optics, their properties, and methods of their characterization illustrated by physical studies. Part three moves on to discuss the applications of optoelectronic and nonlinear optical organic materials in devices and includes chapters on organic solar cells, electronic memory devices, and electronic chemical sensors, electro-optic devices.The Handbook of organic materials for optical and (opto)electronic devices is a technical resource for physicists, chemists, electrical engineers and materials scientists involved in research and development of organic semiconductor and nonlinear optical materials and devices.

Recenzijos

"Overall this book is well-organized, and the individual Chapters have been written by leading scientists in each area of expertise I do really appreciate the good balance between discussing introductory versus advanced topics, scientific versus technological/application issues, and materials versus device structure/applicationsBuy it!" --MaterialsViews.com, March 27, 2014

Contributor contact details xv
Woodhead Publishing Series in Electronic and Optical Materials xxi
Preface xxv
Part I Materials for organic (opto)electronics and nonlinear optics: structure--property relations
1(216)
1 Small molecular weight materials for (opto)electronic applications: overview
3(80)
Y. Shirota
H. Kageyama
1.1 Introduction
3(1)
1.2 Historical development in organic (opto)electronics: devices and materials
4(4)
1.3 Photo and electroactive organic materials: organic π-electron systems
8(5)
1.4 Organic (opto)electronic devices: principles and operation processes
13(6)
1.5 Molecular materials for organic (opto)electronic devices
19(26)
1.6 Structures and performance of organic (opto)electronic devices
45(14)
1.7 Conclusion and future trends
59(1)
1.8 References
60(23)
2 Influence of film morphology on optical and electronic properties of organic materials
83(19)
S. R. Puniredd
W. Pisula
K. Mullen
2.1 Introduction
83(2)
2.2 Discontinuous processing
85(7)
2.3 Continuous processing
92(5)
2.4 Conclusion
97(1)
2.5 References
98(4)
3 Doping effects on charge transport in organic materials
102(41)
K. Leo
M. Hummert
3.1 Introduction
102(3)
3.2 Basics of doping of organic semiconductors
105(15)
3.3 Doped organic p-i-n devices
120(14)
3.4 Conclusion and future trends
134(1)
3.5 Acknowledgements
135(1)
3.6 References
135(5)
3.7 Appendix: compound abbreviations, full names and CAS numbers
140(3)
4 Third-order nonlinear optical properties of π-conjugated polymers with thiophene units and molecular assembly of the polymers
143(27)
H. Kishida
T. Yamamoto
4.1 Introduction
143(1)
4.2 Third-order nonlinear optical properties of π-conjugated polymers with thiophene units and related compounds
144(13)
4.3 Packing and molecular assembly of π-conjugated polymers
157(9)
4.4 Conclusions and future trends
166(1)
4.5 Acknowledgments
167(1)
4.6 References
167(3)
5 Small molecule supramolecular assemblies for third-order nonlinear optics
170(20)
I. Biaggio
5.1 Introduction
170(2)
5.2 Fundamental principles of the third-order nonlinear optical response
172(1)
5.3 Macroscopic susceptibilities and microscopic polarizabilities
173(6)
5.4 From molecules to bulk solid-state materials
179(1)
5.5 Small molecules with large third-order nonlinearities
180(4)
5.6 Small molecule supramolecular assemblies with high optical quality and large third-order susceptibility
184(2)
5.7 Conclusion
186(1)
5.8 References
187(3)
6 Molecular crystals and crystalline thin films for photonics
190(27)
M. Jazbinsek
P. Gunter
6.1 Introduction
190(1)
6.2 Second-order nonlinear optical (NLO) organic crystals
191(9)
6.3 THz-wave generation and detection with organic crystals
200(5)
6.4 Integrated electro-optic (EO) applications
205(4)
6.5 Conclusions and future trends
209(1)
6.6 References
210(7)
Part II (Opto)electronic and nonlinear optical properties of organic materials and their characterization
217(254)
7 Charge generation and transport in organic materials
219(26)
J. C. Sancho-Garcia
7.1 Introduction
219(2)
7.2 Theoretical and computational framework
221(4)
7.3 Single-molecule magnitudes
225(6)
7.4 Supramolecular organization of the samples
231(6)
7.5 Predicting relative and absolute values of mobilities
237(2)
7.6 From p-type to n-type semiconductors
239(1)
7.7 Conclusion
240(2)
7.8 Acknowledgements
242(1)
7.9 References
242(3)
8 Optical, photoluminescent and electroluminescent properties of organic materials
245(29)
J. Godlewski
M. Obarowska
8.1 Introduction
245(1)
8.2 Electronic states of single molecule and molecular solid state
246(3)
8.3 Absorption and emission spectroscopy
249(2)
8.4 Excitonic processes
251(10)
8.5 Electroluminescence in organic materials
261(8)
8.6 Conclusion and future trends
269(1)
8.7 References
270(4)
9 Nonlinear optical properties of organic materials
274(23)
J. Perez-Moreno
9.1 Introduction
274(1)
9.2 Nonlinear optics (NLO) at the molecular level
275(6)
9.3 From microscopic (molecules) to macroscopic (materials)
281(6)
9.4 Quantum mechanical expressions for the molecular (hyper) polarizabilities
287(8)
9.5 Conclusion and future trends
295(1)
9.6 References
295(2)
10 Ultrafast intrachain exciton dynamics in π-conjugated polymers
297(21)
Z. V. Vardeny
C.-X. Sheng
10.1 Introduction
297(6)
10.2 Ultrafast dynamics in π-conjugated polymers
303(9)
10.3 Conclusion
312(2)
10.4 Acknowledgments
314(1)
10.5 References
314(4)
11 Ultrafast charge carrier dynamics in organic (opto)electronic materials
318(38)
H. Diesinger
E. A. Chan
J. Yin
C. Soci
11.1 Introduction
318(4)
11.2 Infrared-active vibrational (IRAV) modes
322(5)
11.3 Transient photocurrent (TPC) spectroscopy
327(8)
11.4 Time-resolved terahertz spectroscopy (TRTS)
335(5)
11.5 Time-resolved microwave conductivity (TRMC)
340(4)
11.6 Experimental evidence of charge localization
344(4)
11.7 Conclusion
348(1)
11.8 Acknowledgments
349(1)
11.9 References
350(6)
12 Short-pulse induced photocurrent and photoluminescence in organic materials
356(21)
I. Biaggio
12.1 Introduction
356(1)
12.2 Photocurrent response after short pulse excitation
357(8)
12.3 Exciton dynamics and photoluminescence in organic molecular crystals
365(6)
12.4 Exciton dynamics and delayed photocurrent
371(4)
12.5 Conclusion
375(1)
12.6 References
375(2)
13 Conductivity measurements of organic materials using field-effect transistors (FETs) and space-charge-limited current (SCLC) technique
377(21)
O. D. Jurchescu
13.1 Introduction
377(1)
13.2 Field-effect transistor (FET) measurements
378(6)
13.3 Space-charge-limited current (SCLC) measurements
384(5)
13.4 Future trends
389(1)
13.5 References
389(9)
14 Charge transport features in disordered organic materials measured by time-of-flight (TOF), xerographic discharge (XTOF) and charge extraction by linearly increasing voltage (CELIV) techniques
398(23)
A. Pivrikas
Johannes Kepler
14.1 Introduction
398(2)
14.2 Measurement techniques
400(7)
14.3 Experimental results of charge carrier mobility determination
407(5)
14.4 Charge transport models in disordered organic semiconductors
412(2)
14.5 Conclusion
414(1)
14.6 References
415(6)
15 Surface enhanced Raman scattering (SERS) characterization of metal--organic interactions
421(21)
K. Willets
K. Mayer
15.1 Introduction
421(3)
15.2 Surface enhanced Raman scattering (SERS) background
424(6)
15.3 Surface enhanced Raman scattering (SERS) applications
430(4)
15.4 Active and passive control of surface enhanced Raman scattering (SERS) signals
434(3)
15.5 Conclusion
437(1)
15.6 References
438(4)
16 Second harmonic generation (SHG) as a characterization technique and phenomological probe for organic materials
442(29)
K. D. Singer
Y. Wu
16.1 Introduction
442(1)
16.2 Second harmonic generation (SHG) in bulk media
443(2)
16.3 Electric field induced second harmonic generation (EFISHG)
445(5)
16.4 Hyper-Rayleigh scattering (HRS)
450(10)
16.5 Second harmonic generation (SHG) probing structure and dynamics
460(4)
16.6 Conclusion
464(1)
16.7 Acknowledgments
464(1)
16.8 References
465(6)
Part III Applications of (opto)electronic and nonlinear optical organic materials in devices
471(315)
17 Organic solar cells (OSCs)
473(35)
M. Hosel
D. Angmo
F. C. Krebs
17.1 Introduction
473(1)
17.2 Organic solar cells (OSCs)
473(2)
17.3 Working principle and device structures
475(4)
17.4 Materials
479(7)
17.5 Roll-to-roll (R2R) processing of organic solar cells (OSCs)
486(13)
17.6 Demonstration projects and conclusion
499(2)
17.7 Acknowledgments
501(1)
17.8 References
501(7)
18 Organic light-emitting diodes (OLEDs)
508(27)
T. Schwab
B. Lussem
M. Furno
M. C. Gather
K. Leo
18.1 Introduction
508(1)
18.2 Basics of organic light-emitting diodes (OLEDs)
509(4)
18.3 Pin organic light-emitting diodes (OLEDs)
513(1)
18.4 Highly efficient monochrome organic light-emitting diodes (OLEDs)
514(6)
18.5 Highly efficient white organic light-emitting diodes (OLEDs)
520(6)
18.6 Degradation of organic light-emitting diodes (OLEDs)
526(1)
18.7 Future trends
527(1)
18.8 References
528(7)
19 Organic spintronics
535(42)
Z. V. Vardeny
T. D. Nguyen
E. Ehrenfreund
19.1 Introduction
535(2)
19.2 Magneto-conductance (MC) and magneto-electroluminescence (MEL) in organic light-emitting diodes (OLEDs)
537(15)
19.3 Organic spin-valves (OSVs)
552(12)
19.4 Optically detected magnetic resonance (ODMR) in poly(dioctyloxy) phenyl vinylene (DOO-PPV) isotopes
564(6)
19.5 Conclusion
570(2)
19.6 Acknowledgments
572(1)
19.7 References
572(5)
20 Organic semiconductors (OSCs) for electronic chemical sensors
577(20)
T. J. Dawidczyk
H. Kong
H. E. Katz
20.1 Introduction to organic semiconductors (OSCs)
577(2)
20.2 Sensitive organic semiconductor (OSC) devices
579(7)
20.3 Sensitive carbon nanotube and graphene devices
586(5)
20.4 Conclusion
591(2)
20.5 Acknowledgments
593(1)
20.6 References
594(3)
21 Organic bioelectronics
597(21)
G. Tarabella
N. Coppede
S. Iannotta
F. Cicoira
P. Kumar
C. Santato
21.1 Introduction to organic bioelectronics
597(2)
21.2 Organic electrochemical transistors (OECTs)
599(6)
21.3 Enzymatic sensing with organic electrochemical transistors (OECTs)
605(3)
21.4 Cell-based organic electrochemical transistors (OECTs)
608(5)
21.5 Conclusions and future trends
613(1)
21.6 References
614(4)
22 Organic electronic memory devices
618(36)
M. C. Petty
22.1 Introduction
618(1)
22.2 Memory types
619(6)
22.3 Resistive memory
625(7)
22.4 Organic flash memory
632(5)
22.5 Ferroelectric random access memory (RAM)
637(3)
22.6 Molecular memories
640(4)
22.7 Future trends
644(4)
22.8 Sources of further information
648(1)
22.9 Acknowledgement
649(1)
22.10 References
649(5)
23 Unconventional molecular scale logic devices
654(22)
M. Oszajca
A. Podborska
K. Szacilowski
23.1 Introduction
654(1)
23.2 Properties of nanoparticles and their applications in molecular scale logic devices
655(6)
23.3 Photoelectrochemical photocurrent switching (PEPS) effect
661(2)
23.4 Logic devices based on photoelectrochemical photocurrent switching (PEPS) effect
663(5)
23.5 Conclusions and future trends
668(2)
23.6 Acknowledgments
670(1)
23.7 References
670(6)
24 Photorefractive (PR) polymers and their recent applications
676(33)
J. Thomas
24.1 Introduction
676(2)
24.2 Fundamentals of photorefractivity
678(10)
24.3 Functions of photorefractive (PR) components
688(6)
24.4 Photorefractive (PR) characterization techniques
694(5)
24.5 Photorefractive (PR) polymer composites for applications
699(6)
24.6 Conclusion and future trends
705(1)
24.7 References
705(4)
25 Organic waveguides, ultra-low loss demultiplexers and electro-optic (EO) polymer devices
709(77)
R. A. Norwood
C. T. DeRose
C. Greenlee
A. Yeniay
25.1 Introduction and motivation for using polymer (opto)electronic components
709(1)
25.2 General polymer science
710(4)
25.3 Polymer processing
714(3)
25.4 Ultra-low loss polymer waveguide devices: materials science
717(6)
25.5 Ultra-low loss polymer waveguide fabrication and process-induced losses
723(11)
25.6 Perfluoropolymer-based true time delay (TTD) modules
734(3)
25.7 Wide band channelizer with high-resolution arrayed waveguide grating (AWG)
737(2)
25.8 Electro-optical polymer-based waveguide devices: materials science
739(9)
25.9 Molecular theory of electro-optic (EO) polymers
748(5)
25.10 Electric-field assisted poling in polymer films
753(2)
25.11 Device and system level analysis for electro-optical polymer waveguides
755(6)
25.12 Electro-optic (EO) polymer spatial light modulators: theory
761(5)
25.13 Spatial light modulator device design and fabrication
766(3)
25.14 Spatial light modulator device characterization
769(7)
25.15 Future design considerations for spatial light modulators
776(1)
25.16 Conclusion
777(1)
25.17 References
778(6)
25.18 Appendix: acronyms
784(2)
Index 786
Oksana Ostroverkhova is Professor in Physics at the Department of Physics, Oregon State University, USA.