Atnaujinkite slapukų nuostatas

Handbook of Plasma Immersion Ion Implantation and Deposition [Kietas viršelis]

Edited by
  • Formatas: Hardback, 760 pages, aukštis x plotis x storis: 252x173x48 mm, weight: 1343 g
  • Išleidimo metai: 06-Oct-2000
  • Leidėjas: Wiley-VCH Publishers Inc.,U.S.
  • ISBN-10: 0471246980
  • ISBN-13: 9780471246985
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 760 pages, aukštis x plotis x storis: 252x173x48 mm, weight: 1343 g
  • Išleidimo metai: 06-Oct-2000
  • Leidėjas: Wiley-VCH Publishers Inc.,U.S.
  • ISBN-10: 0471246980
  • ISBN-13: 9780471246985
Kitos knygos pagal šią temą:
Also known as plasma source ion implantation or plasma-based ion implantation, the technique for plasma processing materials has rapidly become an alternative to the conventional beamline ion implantation over the past few decades. Here, material and nuclear scientists, many from the Lawrence Berkeley National Laboratory, examine the fundamentals, technology, and applications for colleagues in their fields. They discuss such aspects as methods for characterizing and testing materials, designing a processing chamber, plasma sources, pulsar technology, health and safety issues, and semiconductor and non-semiconductor applications. Annotation c. Book News, Inc., Portland, OR (booknews.com)

This is the first book to describe a family of plasma techniques used to modify the surface and near-surface layer of solid materials.

Recenzijos

"...provides a state-of-the-art survey of this important technology, and it will be welcomed by researchers and students in surface engineering, materials science, electrical engineering, and related fields." (E-Streams Vol. 4, No. 3, March 2001)

Contributors xv Preface xix Introduction 1(28) John R. Conrad Concept of Plasma Immersion Ion Implantation 2(1) Comparison of Traditional Ion Beam Implantation with Plasma Immersion Ion Implantation 3(3) Combining Plasma Immersion Ion Implantation with Deposition 6(1) Development of the Basic Science of Ion Implantation 7(2) Development of Conventional Beamline Ion Implantation 9(2) History of the Development of Plasma Immersion Ion Implantation 11(9) Commercial Applications of PIII&D 20(2) Speculation on Future Developments in PIII 22(7) PART I FUNDAMENTALS Fundamentals of Plasmas and Sheaths 29(96) Michael A. Lieberman Plasmas 38(66) Basic Plasma Equations and Equilibrium 38(14) Collisions 52(12) Plasma Dynamics 64(13) Diffusion and Transport 77(15) Discharge Equilibrium 92(12) Sheaths 104(21) Basic Concepts and Equations 104(3) Bohm Sheath Criterion 107(8) High-Voltage Sheaths 115(10) Ion Implantation and Thin-Film Deposition 125(118) Michael Nastasi Wolfhard Moller Wolfgang Ensinger Ion-Solid Interaction 125(48) Introduction 125(1) Basic Principles 126(14) Ion Stopping 140(5) Ion Range Calculations 145(4) Radiation Damage 149(1) Thermal Spikes 150(1) Radiation-Enhanced Diffusion 151(4) Sputtering 155(4) Distribution of Implanted Atoms 159(2) Ion-Solid Simulations 161(6) Ion Mixing 167(6) Ion-Assisted Thin-Film Growth 173(70) Introduction 173(4) Film Stoichiometry 177(4) Film Growth and Structure 181(28) Film Properties 209(34) Fundamentals of Plasma Immersion Ion Implantation and Deposition 243(60) Blake P. Wood Donald J. Rej Andre Anders Ian G. Brown Richard J. Faehl Shamim M. Malik Carter P. Munson Introduction 243(3) Transient Sheaths 246(17) Introduction to Transient Sheaths 246(1) Collisionless Sheath Model 247(2) Extensions to the Collisionless Sheath Model 249(14) Secondary Electron Emission 263(5) Implantation in Pipes and Holes 268(3) Implant Uniformity and Retained Dose 271(4) Implantation of Nonconducting Materials 275(2) Implantation at Elevated Temperatures 277(4) Plasma Immersion Ion Implantation with Deposition 281(12) Introduction 281(1) Plasma Immersion Ion Implantation and Deposition with Cathodic Arc Plasmas 282(6) Sacrificial Layers 288(3) Ion Mixing and Layer Adhesion 291(1) PIIID with Multielement Metal Plasmas 292(1) PIIID in the Presence of Reactive Gases 292(1) Electrical System Requirements 293(10) Materials Characterization and Testing Methods---A Brief Survey 303(40) Kevin C. Walter Kumar Sridharan Michael Nastasi Introduction 303(1) Materials Characterization of Surfaces Treated by Plasma Immersion Ion Implantation 304(16) Retained Ion Dose, Implanted Ion Distribution, and Composition of the Implanted Region 304(11) Precipitates or Secondary Phase Formation 315(4) Surface Roughness 319(1) Materials Characterization of Coatings Synthesized by Plasma Immersion Ion Implantation and Deposition 320(2) Composition 320(1) Crystallinity 321(1) Morphology 321(1) Thickness and Index of Refraction: Ellipsometry 321(1) Materials Testing of Surfaces Treated by Plasma Immersion Ion Implantation 322(10) Hardness and Elastic Modulus 322(2) Tribological Testing 324(4) Corrosion Testing 328(4) Materials Testing of Coatings Synthesized by Plasma Immersion Ion Implantation and Deposition 332(11) Adhesion 332(2) Stress 334(1) Resistivity 334(9) PART II TECHNOLOGY Design of a PIII&D Processing Chamber 343(38) Jesse Matossian George A. Collins Paul K. Chu Carter P. Munson Joseph V. Mantese Introduction 343(1) Background 344(1) General Trends for Chamber Size, Voltage, and Processing Power 345(5) Design Guidelines and Scaling Relationships for PIII&D Chambers 350(6) Chamber Size 350(3) Chamber Structure 353(3) Chamber Material 356(1) Vacuum Pumps 356(8) Pumping Stages 356(1) Relation of Pumping Speed, Outgassing, and Pressure 357(1) Determination of the High-Vacuum Pumping Speed 358(2) Determination of High-Vacuum Gas Throughput 360(1) Types of High-Vacuum Pumps 361(3) Fixtures 364(3) Fixture Types 364(1) Design, Electrical Insulation, and Weight Capacity of Fixtures 364(3) Temperature Control and Shielding of Chamber Walls 367(7) Heating and Cooling of Chamber Walls 367(2) PIII&D with Chamber Walls at Elevated Temperature 369(2) Coating Protection by Internal Shields 371(1) X-ray Shielding 372(2) Process Diagnostics and Control 374(7) In Situ Diagnostics 374(1) Process Control of a PIII&D Facility 375(6) Plasma Sources 381(86) Andre Anders Jacques Pelletier Dan M. Goebel Blake P. Wood Ian G. Brown Wolfgang Ensinger Michel Tuszewski Introduction and Overview 381(3) Thermionic Discharges and Magnetic Multipole Confinement 384(9) Introduction 384(2) Thermionic Discharge Cathodes 386(3) Discharges Confined by Multipole Magnetic Fields 389(4) Pulsed High-Voltage Glow Discharge 393(5) Unassisted Discharge 393(3) Assisted Discharge 396(2) Capacitively Coupled RF Plasma Sources 398(5) Introduction 398(1) Capacitive Source Configuration 398(2) Plasma Parameters 400(1) DC Self-Bias 401(2) Electron Heating Mechanisms 403(1) Inductively Coupled RF Plasma Sources 403(6) Introduction 403(1) Inductively Coupled Plasma Configurations 403(1) Induction Coupling 404(2) Plasma Parameters 406(2) Pulsed Operation 408(1) Microwave Plasma Sources 409(21) Specificity and Classification of Microwave Plasma Sources 409(2) Microwave Circuit of a Plasma System 411(1) Design and Characteristics of Microwave Plasma Sources 412(11) Scale-Up of Microwave Plasma Sources 423(5) Perspectives for Microwave Discharges and Multipole Plasmas in PIII&D 428(2) Remote Gas Plasma Sources 430(5) Introduction 430(1) Streaming Plasma from a Filament Source 430(1) End-Hall Plasma Source 430(2) Constricted Plasma Source 432(3) Cathodic Arc Metal Plasma Sources and Macroparticle Filters 435(9) Introduction 435(1) Short-Pulse Cathodic Arc Plasma Sources 435(2) Long-Pulse and DC Cathodic Arc Plasma Sources 437(3) Macroparticle Filtering 440(4) Other Sources of Plasma and Vapor 444(23) Spotless Cathodic Arcs 444(1) Anodic Vacuum Arcs 444(2) Laser Plasma Source 446(1) Sputtering 446(5) Thermal and Electron Beam Evaporation 451(16) Pulser Technology 467(48) Dan M. Goebel Richard J. Adler Dexter F. Beals William A. Reass General Design Considerations for PIII&D Pulsers 467(10) Introduction 467(3) Pulser Impedance 470(2) Pulser Circuits 472(5) Hard-Tube Pulsers 477(8) Introduction: Advantages of Hard-Tubes Pulsers 477(1) Hard-Vacuum-Tube Types 477(2) Hard-Tube Modulator Circuits 479(6) Pulsers Based on Thyratrons with Pulse-Forming Networks 485(7) Introduction: Advantages of Thyratron Switches 485(1) Combining Thyratrons and Pulse-Forming Networks 486(1) Characteristics of Pulse-Forming Networks 487(5) Solid-State Modulators 492(9) Introduction: Advantages of Solid-State Modulators 492(1) Circuits for High-Power Solid-State Pulsers 493(1) Insulated-Gate Bipolar Transistors 494(1) Thyristors (SCR) 494(1) Gate Turn-Off Devices 495(1) Metal---Oxide---Semiconductor Field Effect Transistors 495(1) Bipolar Transistors 496(1) Power Considerations and Limitations of Solid-State Devices 496(2) Protection and Implementation of Solid-State Devices 498(2) Device Drive Circuits 500(1) Pulse Transformer Design for PIII&D 501(14) Introduction: Use of Pulse Transformers 501(1) Transformer Design 502(4) Example of Empire Hard Chrome Pulser 506(1) General-Purpose IGBT/Transformer Pulser 506(3) Hard-Tube/Transformer Pulser 509(1) High-Voltage/Transformer Pulser 509(6) Health and Safety Issues Related to PIII&D 515(38) Dexter F. Beals Andre Anders Jesse Matossian Introduction 515(1) Electrical Safety 516(8) Voltage, Current, and Stored Energy 516(1) Capacitively Stored Energy 516(2) Inductively Stored Energy 518(1) Safety Precautions Related to Stored Energy 519(1) Lockout and Tagout Procedures 519(1) Safety Grounding Practices 520(1) Equipment Grounding 521(2) Equipment Interlocks and Safety Interlock Systems 523(1) Electromagnetic Radiation Safety 524(15) Some Definitions and Relevant Considerations 524(1) Nonionizing Radiation 525(6) Ionizing Radiation 531(8) Vacuum and Chamber Safety 539(3) Implosion Hazards 539(1) Chamber Entry and Confined Space Hazards 540(1) Compressed Gas Containers 541(1) Chemical Safety 542(11) Classification of Chemicals and Sources of Information 542(1) Solvents and Other Liquids 542(2) Gases and Fumes 544(5) Cryogenics 549(4) PART III APPLICATIONS Nonsemiconductor Applications of PIII&D 553(84) Kumar Sridharan Simone Anders Michael Nastasi Kevin C. Walter Andre Anders Othon R. Monteiro Wolfgang Ensinger Reduction of Wear and Corrosion 553(16) Introduction 553(2) Improvements of Wear Resistance 555(4) Improvements of Corrosion Resistance 559(7) Results of Industrial Field Tests 566(3) Diamondlike Carbon Coatings 569(9) Introduction to Hard Carbon Films 569(1) Preparation of DLC by PIIID 570(1) Enhancement of Adhesion of DLC Coatings 571(1) Microstructure and Characterization of DLC Coatings 571(2) Properties of DLC Coatings 573(5) Hydrogen-Free Hard Carbon Films (a-C Films) 578(17) Synthesis of a-C Films 578(1) Deposition and Properties of a-C Films Synthesized by Cathodic Arc Carbon Plasmas 579(8) Amorphous Hard Carbon for Tribological Applications in the Magnetic Storage Industry 587(8) Deposition of Other Protective Coatings 595(19) Plasma Immersion Ion Implantation in Combination with Thin-Film Deposition 595(1) Postdeposition PIII Treatment of Coatings 596(4) Deposition and PIII Treatment as In-Line Process 600(6) Triode Sputter Deposition 606(3) Metal Plasma Immersion Ion Implantation and Deposition 609(5) Modification of Battery Electrodes 614(7) Introduction 614(1) Nickel Alkaline---Electrolyte Cells 615(1) Lithium Cells 616(3) Lead Acid Cells 619(2) Modification of Polymer Surfaces 621(16) Introduction 621(1) Modification of the Wettability of Polystyrene Surfaces 622(1) Protection of Polymers from Severe Oxidizing Environments 622(1) Improvement of Polymer Wear Resistance by Mesh-Assisted PIII 623(14) Semiconductor Applications 637(46) Paul K. Chu Nathan W. Cheung Chung Chan Bunji Mizuno Othon R. Monteiro Introduction 637(2) Shallow Junction Formation 639(12) Shallow Junctions Formed by PIII 639(2) Plasma Immersion Ion Implantation of BF3/SiF4 641(6) Doping Using Hydrides 647(1) Contamination Studies 648(3) Flat-Panel Displays 651(1) Silicon-on-Insulator Fabrication 652(11) Introduction to SOI Fabrication Processes 653(1) SPIMOX (Separation by Plasma Implantation of Oxygen) 653(4) SPIMOX Using a Water Plasma 657(1) Ion-Cut and Bonded SOI 658(5) Microcavity Engineering 663(4) Gettering Effects 663(2) Buried Light-Emitting Porous Silicon 665(2) Trench Doping 667(2) Metallization Technology for Deep Trench Filling 669(4) Conclusions 673(10) Appendix A Survey of PIII&D Intellectual Property 683(22) Jesse Matossian A.1 Introduction 683(1) A.2 Summary 684(1) A.3 Detailed Listing of the Worldwide Issued Patents 685(20) Appendix B Constants and Formula 705(6) Appendix C Frequently Used Acronyms 711(4) Appendix D About the Authors 715(12) Index 727
André Anders is a Senior Staff Scientist and the Leader of the Plasma Applications Group at Lawrence Berkeley National Laboratory, Berkeley, California. He grew up in East Germany and studied physics in Wroclaw, Poland, Berlin, Germany, and Moscow, Russia. He holds a doctorate degree in physics from Humboldt University, Berlin. From 1987 to 1991 he worked at the Academy of Sciences in East Berlin. After the fall of the Berlin Wall he moved to Berkeley, California, where he joint Berkeley Lab. He is the author of about 200 papers in refereed journals. Dr. Anders serves as an Officer/ Member on several internal conference committees and was elected Fellow of IEEE (USA) and Fellow of the Institute of Physics (UK). He also serves as a member of the Editorial Board of the journal Surface and Coatings Technology.