Atnaujinkite slapukų nuostatas

Handbook of Surface and Interface Analysis: Methods for Problem-Solving [Kietas viršelis]

Edited by (Oxford University, Yarnton, UK), Edited by (Oxford University, Yarnton, UK)
  • Formatas: Hardback, 968 pages, aukštis x plotis: 279x216 mm, weight: 1452 g
  • Išleidimo metai: 27-Jan-1998
  • Leidėjas: Marcel Dekker Inc
  • ISBN-10: 0824700805
  • ISBN-13: 9780824700805
  • Formatas: Hardback, 968 pages, aukštis x plotis: 279x216 mm, weight: 1452 g
  • Išleidimo metai: 27-Jan-1998
  • Leidėjas: Marcel Dekker Inc
  • ISBN-10: 0824700805
  • ISBN-13: 9780824700805
Emphasizing problem-solving for different classes of materials and material functions, the handbook discusses electron optical and scanned probe microscopy, high spatial resolution imaging, and synchrotron-based techniques; x-ray photoelectron, Auger electron, and ion scattering spectroscopy; surface mass spectrometry and depth profiling; ion beam effects and ion implanation; analysis techniques in metallurgy, microelectronics and semiconductors, minerals, ceramics, glasses, and composites; surf ace specific methods for problem-solving in tribology; and catalyst characterization. Annotation c. by Book News, Inc., Portland, Or.

Integrating advances in instrumentation and methods, this work offers an approach to solving problems in surface and interface analysis, beginning with a particular problem and then explaining the most rational and efficient route to a solution. The book discusses electron optical and scanned probe microscopy, high spatial resolution imaging and synchrotron-based techniques. It emphasizes problem-solving for different classes of materials and material function.
Preface iii(18) About the Contributors xxi
1. Introduction 1(8) J. C. Riviere S. Myhra
1. A spectrum of practitioners 1(2)
2. Trends in surface and interface science 3(2)
3. The intended audience 5(1)
4. The structure of the volume 5(4)
2. Elements of Problem-Solving 9(14) S. Myhra J. C. Riviere
1. Introduction 9(1)
2. Surface, interface, and bulk 9(2)
3. The problem-solving sequence 11(4) 3.1. Identification of the problem and formation of an initial hypothesis 11(1) 3.2. Identification of the essential variable(s) 12(1) 3.3. Reduction of the problem as far as possible without losing essential information 12(1) 3.4. Selection of the technique(s) likely to provide the crucial information by the most reliable and economic route 12(1) 3.5. Choice of methodology(ies) consistent with the selection of technique(s) 13(1) 3.6. Acquisition and processing of data of adequate quantity and quality 13(1) 3.7. Interpretation of the data 14(1) 3.8. Review and evaluation 14(1) 3.9. Presentation 14(1)
4. Practical matters in problem-solving for surfaces and interfaces 15(8) 4.1. Specimen handling, preparation and configuration 15(4) 4.1.1. Ex situ preparation 16(1) 4.1.2. In situ preparation 16(2) 4.1.3. Specimen configuration 18(1) 4.2. Technique destructiveness 19(1) 4.3. Quality assurance, best practice and good housekeeping 20(3)
3. How to Use This Book 23(34) S. Myhra J. C. Riviere
1. Introduction 23(1)
2. Definitions 23(1)
3. Decision-making in problem-solving 24(2)
4. Acronyms and jargon 26(5) Table 4.1: Acronyms: Techniques for surfaces and interfaces 29(2) Table 4.2: Acronyms: Surface and interface methodologies 31(1) Table 4.3: Acronyms and trade names: Compounds 32(1) Table 4.4: Acronyms: Miscellaneous 33(1) Table 4.5: Definitions: Miscellaneous 33
5. Finding the information 31(26) Table 4.6: Choices and decisions: Specimen configuration and preparation 34(1) Table 4.7: Choices and decisions: Instrumental aspects 35(2) Table 4.8: Surface and interface techniques: Information and methods 37(3) Table 4.9: Surface and interface techniques: Characteristics and attributes 40(6) Table 4.10: Classes, functions and applications of materials: Key words and locations 46(11)
4. Spectroscopic Techniques: X-Ray Photoelectron Spectroscopy, Auger Electron Spectroscopy, and Ion Scattering Spectroscopy 57(102) Gar B. Hoflund
1. X-ray photoelectron spectroscopy (XPS) 57(34) 1.1. Introduction and history 57(6) 1.2. Experimental equipment and data collection 63(12) 1.2.1. X-ray sources 63(3) 1.2.2. Energy analyzers 66(3) 1.2.3. Energy calibration 69(2) 1.2.4. Data processing 71(1) 1.2.5. Sample configuration 72(1) 1.2.6. Sample treatment 73(2) 1.3. Spectral features and interpretation 75(11) 1.3.1. Determination of composition from XPS data 75(3) 1.3.2. Determination of chemical state 78(7) 1.3.3. Additional features in XPS spectra 85(1) 1.4. Spatially resolved XPS 86(5)
2. Auger electron spectroscopy (AES) 91(30) 2.1. Introduction and history 91(4) 2.2. Experimental equipment and data collection 95(4) 2.2.1. Electron sources 95(1) 2.2.2. Energy analyzers 95(4) 2.3. Spectral features and interpretation 99(7) 2.4. Associated methodologies 106(15) 2.4.1. Depth profiling with AES 106(5) 2.4.2. Angle-resolved AES (ARAES) 111(7) 2.4.3. Scanning Auger microscopy (SAM) 118(3)
3. Ion scattering spectroscopy (ISS) 121(31) 3.1. Introduction and history 121(5) 3.2. Experimental equipment and data collection 126(4) 3.3. Spectral features and interpretation 130(22) 3.3.1. General features 130(2) 3.3.2. Background and neutralization 132(2) 3.3.3. Multiple scattering 134(1) 3.3.4. Multiply charged ion scattering 135(1) 3.3.5. Choice of primary ion 136(3) 3.3.6. Hydrogen and carbon 139(2) 3.3.7. Elemental sensitivity 141(3) 3.3.8. Energy resolution 144(3) 3.3.9. Peak shape 147(1) 3.3.10. Quantification 148(2) 3.3.11. Data processing 150(1) 3.3.12. Depth profiling 151(1) References 152(7)
5. Compositional Analysis by Auger Electron and X-ray Photoelectron Spectroscopy 159(50) Graham C. Smith
1. Introduction 159(2)
2. Spectral interpretation 161(21) 2.1. XPS spectra 161(16) 2.1.1. Elemental line energies 161(4) 2.1.2. Photoelectron line shapes 165(5) 2.1.3. Chemical shifts 170(4) 2.1.4. Curve fitting 174(3) 2.2. Auger electron spectra 177(3) 2.2.1. Elemental line energies 177(2) 2.2.2. Chemical shifts 179(1) 2.3. X-ray-excited Auger electron spectra 180(2)
3. Quantitative of structural analysis 182(23) 3.1. Quantification and homogeneous samples 183(17) 3.1.1. Use of sensitivity factors 183(1) 3.1.2. Measurement of intensity 184(5) 3.1.3. Modified sensitivity factors for improved quantification 189(9) 3.1.3.1. Quantification of XPS data 189(6) 3.1.3.2. Quantification of AES data 195(3) 3.1.4. Statistical errors in quantification 198(2) 3.2. Analysis of specimens with spatially varying compositions 200(1) 3.3. Analysis of specimens with compositional variations in depth 201(4) References 205(4)
6. Ion Beam Techniques: Surface Mass Spectrometry 209(46) Birgit Hagenhoff Derk Rading
1. Principles 209(17) 1.1. Physical effects of ion induced sputtering 210(2) 1.1.1. Sputtering 210(1) 1.1.2. Ionization 211(1) 1.1.3. Formation of molecular species 211(1) 1.2. Instrumentation 212(5) 1.2.1. Primary-ion bombardment 212(2) 1.2.2. Mass analyzers 214(1) 1.2.3. Add-ons 215(2) 1.3. Typical spectra 217(4) 1.3.1. Typical characteristics of SSIMS spectra 217(3) 1.3.2. Typical characteristics of SNMS spectra 220(1) 1.4. Useful definitions in SSIMS and SNMS 221(3) 1.4.1. General 221(1) 1.4.2. SSIMS 222(1) 1.4.3. SNMS 223(1) 1.5. Use of noble metal substrates 224(1) 1.6. Performance summary 225(1)
2. Operational methodology 226(13) 2.1. The analytical question 226(1) 2.2. Spatial location 227(3) 2.3. Identification and peak assignment 230(2) 2.4. Quantification 232(7) 2.4.1. Use of internal standards 233(2) 2.4.2. (Sub)monolayer coverages 235(2) 2.4.3. Organic multilayers 237(2)
3. Problem solving 239(10) 3.1. Defects in car paint 239(3) 3.2. CI diffusion in polymer materials 242(1) 3.3. Monitoring of surface modifications 243(3) 3.4. Residues on glass 246(3)
4. Summary and outlook 249(2) References 251(4)
7. In-depth Analysis: Methods for Depth Profiling 255(42) F. Reniers
1. Introduction 255(5)
2. Sample preparation 260(1)
3. Nondestructive in-depth analysis 260(6) 3.1. Rutherford backscattering spectrometry (RBS) 260(3) 3.1.1. Basic principles 260(1) 3.1.2. Quantitative analysis 261(1) 3.1.3. Application of RBS 262(1) 3.2. Angle-resolved AES and XPS 263(3) 3.2.1. Basic principles 263(2) 3.2.2. Applications 265(1) 3.2.3. Summary 265(1)
4. Destructive depth profiling 266(22) 4.1. Ion guns 266(1) 4.2. AES and XPS 266(13) 4.2.1. Basic principles 267(1) 4.2.2. Quantitative analysis 267(2) 4.2.3. Depth determination-conversion 269(1) 4.2.4. Depth resolution 269(2) 4.2.4.1. Improvement in AES sputter depth profiling 269(2) 4.2.5. Summary of optimized depth profiling conditions for AES/XPS 271(2) 4.2.6. Improvement of depth resolution by sample rotation 273(1) 4.2.7. Chemical depth profiles using AES 273(6) 4.3. Glow discharge optical emission spectroscopy (GDOES) 279(3) 4.3.1. Basic principles 279(1) 4.3.2. Quantitative analysis 279(1) 4.3.3. Recent improvements in GDOES 280(2) 4.4. SIMS 282(3) 4.4.1. Basic principles 282(1) 4.4.2. Quantitative analysis 282(1) 4.4.3. Applications 283(1) 4.4.4. Optimum conditions for performing SIMS depth profiling 284(1) 4.4.4.1. Bombarding conditions: ions 284(1) 4.4.4.2. Angle of incidence 284(1) 4.4.4.3. Effect of the choice of gas in SIMS 284(1) 4.4.4.4. Choice of ion beam energy 285(1) 4.4.4.5. Interferences in SIMS depth profiling 285(1) 4.5. SNMS 285(3) 4.5.1. Basic principles 285(2) 4.5.2. Quantification in SNMS 287(1) 4.5.3. Applications 288(1)
5. Discussion and general conclusion 288(2) 5.1. Typical problems that might be encountered when sputter profiling, and their solutions 289(1) 5.2. Key parameters/considerations for choice of the appropriate analysis method 289(1) References 290(7)
8. Ion Beam Effects in Thin Surface Films and Interfaces 297(50) I. Bertoti M. Menyhard A. Toth
1. Introduction 297(3)
2. Low-energy atomic mixing 300(13) 2.1. Auger depth profiling 301(5) 2.1.1. Multilayer systems 301(1) 2.1.2. High-resolution depth profiling equipment 301(3) 2.1.3. Characteristic depth profiles 304(2) 2.2. Evaluation of Auger depth profiles 306(3) 2.2.1. Sputtering-induced surface roughness 306(2) 2.2.2. Intrinsic surface roughness of interfaces 308(1) 2.2.3. Calculation of the surface concentration 308(1) 2.3. Atomic mixing 309(4) 2.3.1. Energy dependence of ion mixing 310(1) 2.3.2. Interpretation of the depth profiles 310(3)
3. Particle-beam-induced chemical alterations 313(27) 3.1. Thin surface films of inorganic compounds 314(18) 3.1.1. TiN layers 314(10) 3.1.2. Metal oxides 324(3) 3.1.3. Cr-O-Si cermet films 327(5) 3.2. Thin surface films of polymers 332(8) 3.2.1. Aromatic poly(ether sulfone) 335(1) 3.2.2. Aromatic polyimide 336(2) 3.2.3. Organosilicon polymers 338(2) References 340(7)
9. Surface Modification by Ion Implantation 347(48) D. M. Ruck
1. Introduction 347(3)
2. Physical processes 350(4)
3. Ion implantation: instrumentation and procedures 354(1)
4. Methods for characterisation of implanted layers 355(13) 4.1. Phase analysis by Mossbauer spectroscopy 360(8) 4.1.1. General aspects 360(1) 4.1.2. Depth-selective CEMS 361(7)
5. Examples of the application of ion implantation 368(20) 5.1. Improved surface properties in medical endoprothesis 369(8) 5.1.1. Introduction 369(1) 5.1.2. Results 370(6) 5.1.3. Discussion and conclusions 376(1) 5.2. Modification of chromium layers by nitrogen ion implantation 377(4) 5.2.1. Introduction 377(1) 5.2.2. Experimental procedures 377(1) 5.2.3. Results 377(3) 5.2.4. Conclusions 380(1) 5.3. Waveguide structures by ion irradiation of polymeric materials 381(7) 5.3.1. Introduction 381(2) 5.3.2. Generation of um structures 383(3) 5.3.3. Buried waveguide layers 386(1) 5.3.4. Coupling between device and fiber: fiber-chip coupling 387(1) 5.3.5. Conclusions and further developments 387(1) References 388(7)
10. Introduction to Scanned Probe Microscopy 395(52) S. Myhra
1. Introduction 395(7) 1.1. Essential elements of SPM 397(1) 1.2. Brief history of SPM 398(1) 1.3. The SPM family tree 398(4)
2. Physical principles 402(8) 2.1. STM/STS 402(5) 2.2. SFM 407(1) 2.3. Force-distance spectroscopy 407(3)
3. Technical implementation of SPM instrumentation 410(7) 3.1. Generic features and elements 410(2) 3.2. Spatial positioning and control 412(2) 3.3. Gap control loop 414(1) 3.4. Raster implementation and control 415(1) 3.5. Noise and drift management 415(1) 3.6. Environmental control 416(1) 3.7. Data management 417(1)
4. Specifics for some SPM techniques 417(23) 4.1. STM/STS specifics 417(4) 4.2. SFM specifics 421(4) 4.3. SFM probes: general considerations 425(1) 4.4. SFM probes: design criteria 425(2) 4.5. Probe calibration and image artefacts 427(1) 4.6. Determination of normal spring constant 428(3) 4.7. Determination of lateral spring constant 431(2) 4.8. Resonance frequency 433(1) 4.9. Aspect ratio 433(1) 4.10. Radius of curvature of tip 434(6) 4.11. Determination of tip height and tilt 440(1)
5. Problem-solving with SPM 440(3) 5.1. Manipulation on the nanoscale with SPM 442(1) References 443(4)
11. Metallurgy 447(38) R. K. Wild
1. Introduction 447(7) 1.1. Strength of materials 448(1) 1.2. Failure mechanisms 449(1) 1.3. Segregation 449(5) 1.3.1. Thermal 449(5) 1.3.2. Irradiation assisted 454(1)
2. Analytical methods for determining grain boundary segregation 454(23) 2.1. Introduction 454(1) 2.2. Metallographically polished specimens 455(4) 2.2.1. Chemical etching 455(2) 2.2.2. SIMS 457(1) 2.2.3. Autoradiography 458(1) 2.3. Intergranular fracture 459(12) 2.3.1. Impact at low temperature. 459(6) 2.3.1.1. AES 460(5) 2.3.1.2. XPS 465(1) 2.3.2. Hydrogen charging 465(6) 2.3.2.1. Charging methods 465(3) 2.3.2.2. Impact and slow tensile fracture 468(3) 2.4. Transmission electron microscopy 471(6) 2.4.1. Production of a thin foil 471(2) 2.4.2. Field emission gun STEM 473(4) 2.4.2.1. Parallel electron energy loss spectroscopy 473(1) 2.4.2.2. Energy dispersive X-ray analysis 474(2) 2.4.2.3. Comparison of AES and FEGSTEM 476(1) 2.4.3. Time-of-flight atom probe 477(1)
3. Cracks in metals and alloys 477(4) References 481(4)
12. Microelectronics and Semiconductors 485(58) E. Paparazzo
1. Introduction 485(2)
2. Techniques 487(6) 2.1. Surface specificity 487(2) 2.2. Elemental specificity 489(1) 2.3. Chemical sensitivity 489(1) 2.4. Destructiveness 490(1) 2.5. Quantification 491(1) 2.6. Spatial resolution 491(1) 2.7. Surface charging and other considerations 492(1)
3. Josephson junctions 493(7) 3.1. Problem specification 493(1) 3.2. Experimental approach: choice of techniques and specimen configuration 493(1) 3.3. Results 494(5) 3.3.1. AES analysis 494(2) 3.3.2. XPS analysis 496(3) 3.4. Discussion 499(1)
4. Oxidation of InxGa(1-x)AsyP(1-y) semiconductors by NO(2) 500(9) 4.1. Problem specification 500(1) 4.2. Experimental approach: choice of technique and specimen configuration 501(1) 4.3. Results 501(7) 4.3.1. AES analysis 501(2) 4.3.2. SAM and scanning ELS analysis 503(5) 4.4. Discussion 508(1)
5. Si/SiO(2) interface 509(16) 5.1. Problem specification 510(1) 5.2. Experimental approach: choice of technique and specimen configuration 511(1) 5.3. Results 511(10) 5.3.1. Effects of Ar(+) bombardment 511(4) 5.3.2. Interfacial suboxides 515(1) 5.3.3. Surface-hydrated species 516(5) 5.4. Discussion 521(4) 5.4.1. Effects of Ar(+) bombardment and suboxides 521(3) 5.4.2. Surface-hydrated species 524(1)
6. InP/SiO2 system 525(12) 6.1. Problem specification 525(1) 6.2. Experimental approach: choice of technique and specimen configuration 525(1) 6.3. Results 526(3) 6.4. Discussion 529(8) References 537(6)
13. Minerals, Ceramics, and Glasses 543(62) R. St. C. Smart
1. Introduction 543(2)
2. Information required: analytical techniques 545(1)
3. Analysis strategy 545(7)
4. Minerals 552(24) 4.1. Phase structures 552(6) 4.2. Surface structures 558(8) 4.3. Surface sites 566(2) 4.4. Grain boundaries and intergranular films 568(2) 4.5. Depth profiles 570(1) 4.6. Adsorption 570(3) 4.7. Surface reactions 573(1) 4.8. Surface modification 574(2)
5. Ceramics 576(10) 5.1. Phase structures 576(2) 5.2. Surface structures 578(1) 5.3. Surface sites 579(1) 5.4. Grain boundaries and intergranular films 580(1) 5.5. Depth profiles 581(1) 5.6. Adsorption 582(3) 5.7. Surface reactions 585(1) 5.8. Surface modification 585(1)
6. Glasses 586(12) 6.1. Surface composition 586(3) 6.2. Surface sites 589(1) 6.3. Depth profiles 589(1) 6.4. Adsorption 590(1) 6.5. Surface reactions 591(5) 6.6. Surface modification 596(2) References 598(7)
14. Composites 605(38) P. M. A. Sherwood
1. Introduction 605(1)
2. Presenting fibers for surface analysis 606(3) 2.1. Presentation of multiple fibers for analysis 606(1) 2.2. Problems in the study of conducting fibers 607(2) 2.3. The question of fiber decomposition 609(1)
3. Presenting composites for surface analysis 609(1)
4. Surface analytical techniques for composites and fibers 610(4) 4.1. X-ray diffraction 610(1) 4.2. FTIR and Raman spectroscopies 611(1) 4.3. SEM 612(1) 4.4. STM and AFM 612(1) 4.5. Wavelength dispersive X-ray emission in an electron microprobe 612(1) 4.6. Surface energy 613(1) 4.7. Titrimetric methods 613(1) 4.8. Mass spectrometry 614(1) 4.9. SIMS 614(1) 4.10. Ion scattering spectroscopy 614(1)
5. X-ray photoelectron spectroscopic studies of composites and fibers 614(24) 5.1. Introduction 614(2) 5.2. The question of surface charging 616(2) 5.3. Depth profiling of carbon composites and fibers 618(1) 5.4. Decomposition of surface functionality during spectral collection 619(2) 5.5. XPS data analysis and interpretation of core chemical shifts 621(11) 5.5.1. Fitting C Is spectra 622(3) 5.5.2. Detailed fitting considerations 625(3) 5.5.3. The use of monochromatic X-radiation 628(2) 5.5.4. Fitting O 1s spectra 630(1) 5.5.5. Fitting N 1s spectra 631(1) 5.6. Interpreting the valence-band spectrum 632(4) 5.6.1. Using calculations to predict valence-band spectra 633(1) 5.6.2. Understanding the valence-band spectra of carbon fibers 633(2) 5.6.3. The use of UV rather than X-radiation 635(1) 5.7. Interfacial studies 636(2)
6. Concluding comments 638(2) References 640(3)
15. Corrosion and Surface Analysis: An Integrated Approach Involving Spectroscopic and Electrochemical Methods 643(54) N. S. Mclntyre R. D. Davidson I. Z. Hyder A. M. Brennenstuhl
1. Introduction 643(3) 1.1. Types of corrosion process 644(1) 1.2. Corrosion and surfaces 645(1)
2. Protocols for corrosion film analysis 646(22) 2.1. Preliminary sample handling 646(1) 2.2. Contaminants 647(1) 2.3. Preliminary examination 648(2) 2.4. Cross sectioning of oxide surface films 650(3) 2.5. Pressure restrictions on sample analysis 653(1) 2.6. SEM and EDS analyses 653(3) 2.7. XPS 656(5) 2.8. AES 661(4) 2.9. SIMS 665(2) 2.10. Other methods 667(1)
3. Background to the problem: A working hypothesis 668(1)
4. Experimental strategy 669(2)
5. Electrochemical techniques for surface corrosion studies 671(3) 5.1. Basic electrode kinetics 671(1) 5.2. Electrochemical techniques 672(2) 5.2.1. Linear polarization 672(1) 5.2.2. Anodic polarization 672(1) 5.2.3. Electrochemical impedance spectroscopy 673(1)
6. Results and assessment 674(19) 6.1. Initial characterization 674(1) 6.2. Boiler simulation corrosion experiments 675(4) 6.3. Contrived corrosion experiments on Monel 679(14) 6.3.1. Electrochemical measurements at pH 10 679(3) 6.3.2. Microscopy studies of oxides from pH 10 exposures 682(1) 6.3.3. Elemental and chemical compositions of oxides formed at pH 10 683(7) 6.3.4. Electrochemical and microscopy studies of alloys exposed to pH 1 690(3)
7. Conclusions 693(3) References 696(1)
16. Problem-Solving Methods in Tribology with Surface-Specific Techniques 697(50) C. Donnet
1. Tribology and surface-related phenomena 697(3)
2. Surface analysis requirements for tribology 700(14) 2.1. Overview 700(2) 2.2. Dimensional criterion 702(1) 2.3. Time-scale criterion 703(3) 2.4. Information criterion 706(8) 2.4.1. Physicochemical and structural information 707(4) 2.4.2. Surface morphology 711(1) 2.4.3. Physical, mechanical and frictional surface and interface properties 712(2)
3. Generic studies 714(27) 3.1. Ultrathin boundary lubricant films 714(3) 3.2. Tribochemistry of antiwear additives in boundary lubrication 717(5) 3.2.1. Ex situ surface analytical investigations 717(2) 3.2.2. In vivo pre mortem surface analytical investigations 719(1) 3.2.3. In situ post mortem surface analytical investigations in Ultrahigh Vacuum 720(2) 3.3. Tribochemical activity of nascent surfaces 722(2) 3.4. Influence of the nature of the surface on the tribochemistry of various tribo-materials 724(3) 3.5. Effect of adsorbate monolayers on dry friction 727(2) 3.6. Tribochemistry of SiC/SiC under a partial pressure of oxygen 729(2) 3.7. Relationship of durability to microstructure of IBAD MoS(2) coatings 731(1) 3.8. Frictionless sliding of pure MoS(2) in UHV 732(5) 3.9. Tribology of carbonaceous coatings 737(3) 3.10. Tribochemistry of C(60) coatings 740(1)
4. Synthesis and conclusion 741(2) Acronyms 743(1) References 744(3)
17. Catalyst Characterization 747(34) W. E. S. Unger T. Gross
1. Introduction 747(2)
2. Applicability of surface spectroscopies in catalyst characterization 749(3)
3. Sample damage 752(1)
4. Sample preparation 753(3)
5. Charging of insulator surfaces by the probe 756(1)
6. Chemical-state analysis with XPS by fingerprinting and reference to databases or chemical-state plots 757(9)
7. Chemical state analysis with SIMS by fingerprinting 766(3)
8. Miscellaneous 769(3) 8.1. The molecular probe approach: assessment of acid-base properties 769(1) 8.2. Alloying at bimetallic supported catalysts 770(1) 8.3. In-depth analysis 771(1)
9. Quantitative surface analysis of catalysts: composition, dispersion and coverage 772(4) References 776(5)
18. Adhesion Science and Technology 781(54) J. F. Watts
1. Introduction 781(1)
2. Characteristics of the solid substrate 782(6) 2.1. Organic contamination 783(1) 2.2. Oxide films at metal surfaces 784(3) 2.3. Carbon fiber composite materials 787(1)
3. Failure analysis: identification of the locus of failure 788(20) 3.1. Adhesion to brass 789(2) 3.2. Adhesion of organic coatings to steel 791(8) 3.3. Zinc surfaces 799(1) 3.4. Aluminum alloys 800(2) 3.5. Composite materials 802(2) 3.6. Ceramics 804(3) 3.7. Summary 807(1)
4. Probing the buried interface 808(3)
5. Organosilane adhesion promoters 811(3)
6. Acid-base interactions in adhesion 814(9) 6.1. Evaluation of acid-base interactions in adhesion 814(2) 6.2. The XPS chemical shift and acid-base interactions 816(1) 6.3. The use of vapor phase probes for the determination of -XXXH(AB) 817(1) 6.4. Quantitative acid-base characteristics of the polymer 818(4) 6.5. Acid-base properties of inorganic surfaces 822(1) 6.6. Concluding remarks 823(1)
7. Computer chemistry and molecular modeling 823(2)
8. Future prospects 825(3) References 828(7)
19. Archaeomaterials 835(36) E. Paparazzo
1. Introduction 835(1)
2. Choice of techniques for the study of archeomaterials 836(1) 2.1. Bulk techniques 836(1) 2.2. Surface-specific techniques: XPS and SAM 836(1)
3. Roman lead pipe fistula 837(20) 3.1. Description of material and specimen 837(1) 3.2. Results 838(14) 3.3. Discussion 852(5)
4. Roman leaded bronzes 857(11) 4.1. Specification of the problem 857(1) 4.2. Results 857(10) 4.3. Discussion 867(1) References 868(3) Appendix
1. Physical Constants and Conversion Factors 871(2) Appendix
2. Data for the Elements and Isotopes 873(12) Appendix
3. Less Commonly Used Techniques for Analysis of Surfaces and Interfaces 885(18) Gar B. Hoflund J. C. Riviere
1. Ultraviolet photoemission spectroscopy (UPS) 885(4) References 888(1)
2. Electron energy loss spectroscopy (ELS) 889(3) References 892(1)
3. Electron-stimulated desorption (ESD) 892(5) References 897(1)
4. Vibrational spectroscopies 897(5) 4.1. Infrared techniques 897(2) 4.1.1. Attenuated total reflectance (ATR) 898(1) 4.1.2. Reflection absorption infrared spectroscopy (RAIRS) 898(1) 4.2. Electron impact technique 899(3) 4.2.1. High-resolution electron energy loss spectroscopy (HREELS) 899(3) References 902(1) Appendix
4. Core-Level Binding Energies, Auger Kinetic Energies, and Modified Auger Parameters for Some Chemical Elements in Various Compounds 903(4) References 905(2) Appendix
5. Documentary Standards in Surface Analysis: The Way of the Future? 907(22) S. J. Harris
1. Introduction 907(2)
2. ISO technical committee 201 on surface chemical analysis 909(15) 2.1. Structure of ISO technical committee 201 909(2) 2.2. ISO technical committee 201 sub-committees 911(13) 2.3. ISO TC201 Working Groups 924(1)
3. Conclusions 924(3) References 927(2) Index 929