Atnaujinkite slapukų nuostatas

El. knyga: Handbook of Sustainable Polymers for Additive Manufacturing

(The Boeing Company, Ridley Park, USA)
  • Formatas: 598 pages
  • Išleidimo metai: 24-May-2022
  • Leidėjas: CRC Press
  • Kalba: eng
  • ISBN-13: 9781000470482
  • Formatas: 598 pages
  • Išleidimo metai: 24-May-2022
  • Leidėjas: CRC Press
  • Kalba: eng
  • ISBN-13: 9781000470482

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book provides the latest technical information on sustainable materials that are feedstocks for additive manufacturing (AM). Topics covered include an up-to-date and extensive overview of raw materials, their chemistry, and functional properties of their commercial versions; a description of the relevant AM processes, products, applications, advantages, and limitations; prices and market data; and a forecast of sustainable materials used in AM, their properties, and applications in the near future. Data included are relative to current commercial products and are presented in easy-to-read tables and charts.

Features











Highlights up-to-date information and data of actual commercial materials





Offers a broad survey of state-of the-art information





Forecasts future materials, applications, and areas of R&D





Contains simple language, explains technical terms, and minimizes technical lingo





Includes over 200 tables, nearly 200 figures, and more than 1,700 references to technical publications, mostly very recent

Handbook of Sustainable Polymers for Additive Manufacturing appeals to a diverse audience of students and academic, technical, and business professionals in the fields of materials science and mechanical, chemical, and manufacturing engineering.
Preface xv
Acknowledgments xvii
Author Biography xix
List of Abbreviations
xxi
Glossary of Terms and Definitions xxvii
Chapter 1 Sustainable Polymers for Additive Manufacturing
1(64)
1.1 Introduction
1(1)
1.2 Polymers
2(2)
1.3 Plastics
4(2)
1.4 Important Properties of Plastics
6(4)
1.5 Thermosets, Thermoplastics, Elastomers
10(11)
1.6 Liquid-Crystalline Polymers (LCPs)
21(1)
1.7 Polymer Matrix Composite Materials (PMCs)
22(6)
1.7.1 Introduction
22(3)
1.7.2 PMCs for AM
25(1)
1.7.3 FRPCs for ME
25(3)
1.7.4 FRPCs for VP
28(1)
1.7.5 FRPCs for ShL
28(1)
1.7.6 FRPCs for PBF
28(1)
1.8 Natural Polymers
28(1)
1.9 Market Data for Polymers
29(3)
1.10 Biobased Polymers
32(2)
1.11 Sustainable Polymers
34(3)
1.12 Degradable, Biodegradable, Recyclable, Compostable Polymers
37(3)
1.13 Properties and Market of Biobased Polymers
40(2)
1.14 Bioplastics
42(9)
1.15 Near Future of Sustainable Polymers
51(14)
Further Readings
53(1)
References
54(11)
Chapter 2 Additive Manufacturing and Its Polymeric Feedstocks
65(120)
2.1 Introduction to Additive Manufacturing (AM)
65(10)
2.2 AM Feedstocks
75(1)
2.3 Material Extrusion (ME)
75(19)
2.3.1 Process Description
75(3)
2.3.2 ME Print Parameters
78(3)
2.3.3 Polymers for ME
81(6)
2.3.4 Anisotropy of Printed Parts
87(1)
2.3.5 Effect of Build Orientation on Strength of Printed Parts
87(1)
2.3.6 Pellet-Based Extrusion
88(1)
2.3.7 Bioextrusion (BE)
89(3)
2.3.8 Microextrusion Printing (MEP)
92(1)
2.3.9 Liquid Deposition Modeling (LDM)
92(1)
2.3.10 Contour Crafting (CC) and Cement and Concrete Printing
93(1)
2.3.11 Continuous Filament Fabrication (CFF)
93(1)
2.3.12 Water-Based Robotic Fabrication (WBRF)
94(1)
2.4 Powder Bed Fusion (PBF)
94(8)
2.4.1 Process Description
94(2)
2.4.2 Polymers for PBF
96(6)
2.4.3 Anisotropy
102(1)
2.5 VAT Photopolymerization (VP)
102(11)
2.5.1 Process Description
102(2)
2.5.1.1 Stereolithography (SL)
104(2)
2.5.1.2 Digital Laser Processing (DLP)
106(1)
2.5.1.3 Micro VP
107(1)
2.5.1.4 Continuous Liquid Interface Production (CLIP™)
107(1)
2.5.1.5 Daylight Polymer Printing (DPP)
107(1)
2.5.1.6 Two-Photon VP (2PVP)
108(1)
2.5.1.7 Lithography-Based Metal Manufacturing (LMM)
109(1)
2.5.2 Polymers for VP
109(1)
2.5.2.1 Introduction
109(1)
2.5.2.2 Polymers for VP
110(3)
2.6 Binder Jetting (BJ)
113(6)
2.6.1 Process Description
113(1)
2.6.2 Feedstocks for BJ
114(1)
2.6.3 Multi Jet Fusion (MJF)
114(3)
2.6.4 Three Dimensional Printing™ (3DP™)
117(2)
2.7 Material Jetting (MJ)
119(4)
2.7.1 Process Description
119(2)
2.7.2 Commercial MJ Printers
121(1)
2.7.3 Reactive Inkjet Printing (RIJ)
121(1)
2.7.4 Feedstocks for MJ
122(1)
2.8 Direct Energy Deposition (DED)
123(1)
2.8.1 Process Description and Versions
123(1)
2.8.2 Arevo® Process
123(1)
2.9 Sheet Lamination (ShL)
124(3)
2.9.1 Process Description
124(2)
2.9.2 Feedstocks and Biobased Alternatives
126(1)
2.9.2.1 Current Feedstocks
126(1)
2.9.2.2 Sustainable Feedstocks
127(1)
2.10 Direct Writing (DW)
127(4)
2.10.1 Process Description
127(2)
2.10.2 Ink-Based DW
129(1)
2.10.2.1 Introduction
129(1)
2.10.2.2 Nozzle Ink-Based DW
129(1)
2.10.2.3 Quill Ink-Based DW
130(1)
2.10.2.4 Aerosol Ink-Based DW
130(1)
2.10.2.5 Inkjet Printing DW
130(1)
2.10.3 Laser Transfer DW (LTDW)
130(1)
2.10.4 Thermal Spray DW
131(1)
2.10.5 Beam Deposition DW
131(1)
2.11 4D Printing (4DP)
131(9)
2.11.1 Process Description
131(2)
2.11.2 Polymers for 4DP
133(1)
2.11.2.1 Introduction
133(1)
2.11.2.2 Hydrogels (HGs)
134(1)
2.11.2.3 Shape-Memory Polymers (SMPs)
134(5)
2.11.2.4 Printed Active Composites (PACs)
139(1)
2.11.2.5 Near Future for 4DP
139(1)
2.12 3D Bioprinting (BP)
140(2)
2.12.1 Introduction
140(2)
2.12.2 Extrusion-Based BP (EBP)
142(1)
2.13 Fiber Encapsulation AM (FEAM)
142(1)
2.14 Present and Future Sustainability of AM
143(5)
2.15 Printer Selection
148(2)
2.16 Near future of AM
150(35)
2.16.1 Introduction
150(2)
2.16.2 Production
152(1)
2.16.3 Materials
152(1)
2.16.4 Polymers
153(1)
2.16.4.1 General Requirements
153(1)
2.16.4.2 SPsforAM
154(2)
2.16.4.3 Polymer Matrix Composites (PMCs)
156(1)
2.16.4.4 Polymer-Based Nanocomposites (PNCs)
157(1)
2.16.4.5 Carbon Fiber-Reinforced Polymers (CFRPs)
157(1)
2.16.4.6 Liquid-Crystalline Polymers (LCPs)
158(1)
2.16.4.7 Other Polymers for AM
158(1)
2.16.4.8 Properties of Polymers for AM in Near Future
159(1)
2.16.5 Processes and Printers
159(1)
2.16.6 Education and Training
160(1)
2.16.7 Areas of Applications
160(1)
2.16.7.1 Introduction
160(1)
2.16.7.2 Aerospace
160(1)
2.16.7.3 Automotive
161(1)
2.16.7.4 Biomedical and Pharmaceutical
162(2)
2.16.7.5 Architecture, Buildings, and Construction
164(2)
Further Readings
166(1)
References
166(19)
Chapter 3 Poly(Lactic Acid)
185(88)
3.1 Overview of Poly(Lactic Acid)
185(7)
3.1.1 Introduction
185(2)
3.1.2 Applications
187(1)
3.1.3 Current and Future Market
187(1)
3.1.4 Advantages of PLA
188(2)
3.1.5 Disadvantages of PLA
190(2)
3.2 Production of PLA
192(1)
3.3 Properties of PLA
193(4)
3.4 PLA Feedstocks for FFF
197(6)
3.5 Commercial Unfilled PLA Filaments for FFF
203(12)
3.5.1 Introduction
203(3)
3.5.2 Anisotropy
206(1)
3.5.3 Infill
207(2)
3.5.4 Films vs. Dumbbells
209(1)
3.5.5 Precision of Property Values
209(2)
3.5.6 Electrical Properties
211(1)
3.5.7 Comparison of PLA to Fossil-Based Polymers
212(1)
3.5.8 Recycled PLA
212(1)
3.5.9 Major Suppliers of PLA Filaments and Their Products
213(2)
3.6 Experimental PLA Powder
215(2)
3.7 Commercial Composite PLA Filaments
217(10)
3.7.1 Introduction
217(1)
3.7.2 Glass-Filled PLA
217(2)
3.7.3 Metal-Filled PLA
219(1)
3.7.3.1 Comparison
219(3)
3.7.3.2 Analysis of Commercial Metal-Filled PLA Filaments
222(1)
3.7.4 Carbon-filled PLA Filaments
223(1)
3.7.4.1 Commercial Carbon-Filled PLA Filaments
223(2)
3.7.4.2 Experimental Carbon-Filled PLA Filaments
225(2)
3.7.5 Aramid-PLA Filament
227(1)
3.8 Experimental PLA Composite Filaments
227(1)
3.9 Properties of PLA Feedstocks for AM
228(35)
3.9.1 Introduction
228(1)
3.9.2 Porosity
229(1)
3.9.3 Moisture
229(1)
3.9.4 Tensile Properties
229(1)
3.9.4.1 Effect of Build Orientation
229(6)
3.9.4.2 Effect of Printers
235(1)
3.9.4.3 Effect of Interfacial Bonding Strength between Adjacent Filaments
236(1)
3.9.4.4 Mechanical Models of Strength and Modulus of Printed PLA
237(1)
3.9.5 Compressive Properties
238(3)
3.9.6 Shear Properties
241(1)
3.9.7 Impact Properties
241(3)
3.9.8 Fracture Toughness
244(2)
3.9.9 Fatigue Properties
246(4)
3.9.10 Flexural Properties
250(1)
3.9.11 Effect of Interlayer and Intralayer Cohesion
251(1)
3.9.12 Effect of Temperature
252(4)
3.9.13 Effect of Filament Color
256(1)
3.9.14 Crystallinity
257(1)
3.9.15 Chemical Composition
258(1)
3.9.16 Thermal Properties before and after Printing
258(1)
3.9.17 Water Uptake
258(1)
3.9.18 Plasticizers
259(2)
3.9.19 Effect of Speed and Frequency of Applied Load
261(1)
3.9.20 Creep and Stress Relaxation
262(1)
3.10 Properties of Recycled PLA
263(10)
References
264(9)
Chapter 4 Polyamide
273(24)
4.1 Overview of Sustainable and Non-Sustainable Polyamides (PAs)
273(3)
4.2 Castor Oil (CO)
276(1)
4.3 Overview of PA 11
277(1)
4.4 Commercial PA 11 Grades for AM
277(6)
4.4.1 Overview
277(3)
4.4.2 Rilsan&rade; Invent PA 11
280(3)
4.5 Experimental Filament in PA 11 for FFF
283(1)
4.6 Process Optimization for Laser Printing PA 11
284(2)
4.7 Tension, Fracture, and Fatigue Properties of PA 11 for PBF
286(2)
4.8 PA 11 Nanocomposites
288(5)
4.9 Experimental Blends of PA 11
293(4)
References
294(3)
Chapter 5 Polyhydroxyalkanoates
297(16)
5.1 Overview of Polyhydroxyalkanoates (PHAs)
297(4)
5.2 Commercial PHAs for AM
301(4)
5.3 R&D in PHAs for AM
305(8)
Further Readings
310(1)
References
311(2)
Chapter 6 Wood-Filled Feedstocks
313(28)
6.1 Wood Overview
313(2)
6.2 Advances in Feedstocks and Processes for Wood AM
315(1)
6.3 Commercial Wood/Polymers For AM
315(5)
6.4 Wood for AM
320(1)
6.5 Experimental Wood-filled Composites for AM
320(21)
6.5.1 Introduction
320(1)
6.5.2 Wood Content. Matrix Materials
321(5)
6.5.3 Wood/concrete for AM
326(2)
6.5.4 Wood/pla Compatibility and Interfacial Adhesion
328(4)
6.5.5 Surface Properties, Self-Shaping Design, New Process
332(5)
6.5.6 Recycled Wood Furniture Waste
337(1)
Further Readings
337(1)
References
337(4)
Chapter 7 Cellulose
341(48)
7.1 Overview of Cellulose
341(4)
7.2 Commercial AM Materials Containing Cellulose
345(2)
7.3 Experimental Cellulose for AM
347(42)
7.3.1 Introduction
347(1)
7.3.2 Cellulose Powder and Paper
348(1)
7.3.2.1 Cellulose as Substrate
348(2)
7.3.2.2 Cellulose as Ingredient
350(2)
7.3.3 Cellulose Esters
352(1)
7.3.3.1 Introduction
352(2)
7.3.3.2 Cellulose Acetate (CA)
354(1)
7.3.4 Cellulose Ethers
355(1)
7.3.4.1 Introduction
355(1)
7.3.4.2 Carboxymethyl Cellulose (CMC)
355(4)
7.3.4.3 Ethyl Cellulose (EC)
359(2)
7.3.4.4 Hydroxyethyl Cellulose (HEC)
361(2)
7.3.4.5 Hydroxypropyl Cellulose (HPC)
363(1)
7.3.4.6 Hydroxypropyl Methylcellulose (HPMC)
364(3)
7.3.4.7 Methylcellulose (MC)
367(1)
7.3.5 Cellulose/PLA
367(1)
7.3.6 Microcrystalline Cellulose (MCC)
368(1)
7.3.6.1 Introduction
368(1)
7.3.6.2 Commercial MCC
369(1)
7.3.6.3 Experimental Formulations of MCC for AM
369(3)
7.3.7 Nanocellulose (NC)
372(1)
7.3.7.1 Introduction
372(1)
7.3.7.2 Cellulose Nanofibers (CNFs)
373(3)
7.3.7.3 Cellulose Nanocrystals (CNCs)
376(5)
References
381(8)
Chapter 8 Bamboo
389(18)
8.1 Overview of Bamboo
389(1)
8.2 Bamboo Properties
390(4)
8.3 Commercial Bamboo Filaments for AM
394(5)
8.4 Experimental Bamboo-Filled PLA Filaments for AM
399(8)
References
404(3)
Chapter 9 Lignin
407(18)
9.1 Overview of Lignin
407(4)
9.2 Market and Applications of Lignin
411(1)
9.3 Commercial Lignin AM Filaments
412(1)
9.4 Experimental Lignin Blends
412(1)
9.5 Experimental Lignin-Filled Feedstocks for AM
413(7)
9.6 Near Future of Lignin for AM
420(5)
References
420(5)
Chapter 10 Trees and Natural Fibers
425(36)
10.1 Feedstocks from Trees and Natural Fibers
425(1)
10.2 Cork
426(5)
10.2.1 Overview of Cork
426(1)
10.2.2 Commercial Cork-Based Filaments for AM
427(1)
10.2.3 Experimental Cork Feedstocks for AM
428(3)
10.3 Natural Fibers and Their Polymer Composites
431(4)
10.4 Sisal
435(3)
10.5 Flax
438(3)
10.5.1 Overview of Flax
438(1)
10.5.2 Commercial Flax-Based Feedstocks for AM
439(1)
10.5.3 Experimental Flax-Based Feedstocks for AM
439(2)
10.6 Hemp
441(4)
10.6.1 Overview of Hemp
441(1)
10.6.2 Commercial and Experimental Hemp/Polymer Composites
442(1)
10.6.3 Commercial Hemp Filament for AM
442(1)
10.6.4 Experimental Hemp-Based Filaments for AM
443(2)
10.7 Harakeke
445(1)
10.8 Nutshell and Nut Skin
445(3)
10.8.1 Coconut Shell
445(1)
10.8.2 Macadamia Nutshell
446(1)
10.8.3 Almond Skin
447(1)
10.9 Plant-Based Waste
448(1)
10.10 Algae
448(5)
10.10.1 Overview of Algae
448(1)
10.10.2 Algae/Polymer Composites
449(1)
10.10.3 Commercial Algae-Based AM Feedstocks
450(1)
10.10.4 Experimental Algae-Based AM Feedstocks
451(1)
10.10.5 Experimental Alginate-Based AM Feedstocks
451(1)
10.10.6 Experimental Agarose-Based AM Feedstocks
452(1)
10.11 Rice Straw
453(2)
10.12 Beer, Coffee, and Wine Waste
455(1)
10.13 Grains
455(1)
10.14 Resins from Trees
456(5)
Further Readings
457(1)
References
457(4)
Chapter 11 Carbohydrates
461(16)
11.1 Introduction
461(1)
11.2 Starch
461(8)
11.2.1 Introduction
461(2)
11.2.2 Commercial Starch Feedstocks for AM
463(1)
11.2.3 Experimental Starch Feedstocks for AM
464(5)
11.3 Sugar
469(8)
11.3.1 Introduction
469(1)
11.3.2 Experimental Sugar Feedstocks for AM
470(3)
References
473(4)
Chapter 12 Hydrogels
477(20)
12.1 Introduction
477(4)
12.2 Sustainable HGs for AM
481(16)
12.2.1 Introduction
481(1)
12.2.2 Agarose
482(2)
12.2.3 Alginate
484(1)
12.2.4 Carrageenan
485(1)
12.2.5 Cellulose and Its Derivatives
485(1)
12.2.6 Chitosan
486(2)
12.2.7 Collagen
488(1)
12.2.8 Fibrin
489(1)
12.2.9 Gelatin
490(1)
12.2.10 Hyaluronan
491(1)
12.2.11 Peptides
492(1)
Further Readings
493(1)
References
494(3)
Chapter 13 Polybutylene Succinate
497(10)
13.1 Overview of Polybutvlene Succinate (PBS)
497(2)
13.2 Commercial PBS Filament for AM
499(1)
13.3 Experimental PBS for AM and Other Processes
499(8)
References
505(2)
Chapter 14 3D Food Printing
507(20)
14.1 Reasons for 3D Food Printing (3DFP)
507(1)
14.2 Feedstock Screening
508(2)
14.3 Food Viscosity
510(1)
14.4 AM Processes for Food
511(6)
14.4.1 Introduction
511(1)
14.4.2 Binder Jetting (BJ)
511(3)
14.4.3 Inkjet Printing (IP)
514(1)
14.4.4 Material Extrusion (ME)
515(1)
14.4.4.1 Introduction
515(1)
14.4.4.2 Room Temperature ME
515(1)
14.4.4.3 Melting ME
515(1)
14.4.4.4 Gel-Forming ME
516(1)
14.4.5 Powder Bed Fusion (PBF)
516(1)
14.5 Foods For 3DFP
517(2)
14.6 Sustainabilly of 3DFP
519(1)
14.7 Market of 3DFP
520(1)
14.8 Near Future and Challenges of 3DFP
520(7)
References
522(5)
Chapter 15 Acrylates
527(12)
15.1 Introduction
527(2)
15.2 Commercial Acrylates for AM
529(1)
15.3 Experimental Acrylates in AM
529(10)
15.3.1 Introduction
529(1)
15.3.2 Non-Sustainable Acrylate-Based Feedstocks
529(4)
15.3.3 Sustainable Acrylate-Based Feedstocks
533(3)
References
536(3)
Appendix A List of Companies 539(4)
Appendix B Standard Test Methods for Plastics Issued by ASTM and ISO 543(2)
Index 545
Antonio Paesano is currently Additive Manufacturing (AM) Lead at The Boeing Company. He earned a M.S. in Mechanical Engineering and Ph.D. in Materials Engineering from the University of Naples Federico II (Italy), and M.S. in Polymer Science from the University of Ferrara (Italy). He is a certified Six Sigma Green Belt, and a trained Back Belt.

His work experience encompasses AM, engineering polymers, composite and advanced engineering materials, design, advanced manufacturing, testing and analysis, correlation material properties-process parameters-product performance, product development, metrology, applied statistics, and quality improvement. He holds six patents, authored and co-authored more than 50 technical papers and two book chapters in his areas of expertise. He has been the scientific chair of symposia on AM, sustainable polymers, and innovation in aerospace.

He has been an invited speaker in AM at conferences and workshops. His paper on sustainable polymers for AM received the 2017 SAMPE/CAMX Award for "outstanding technical paper". He also received the 2018 Knowledge Management Award by the Boeing Technical Journal for his co-authored paper on fatigue testing and analysis, and the 2020 Boeing Innovation Award for improved processing of composite materials.

Throughout his career, he has identifyed, accelerated, and integrated innovation in products from transportation to construction, marine, sports, military, and aerospace. Prior to joining Boeing, he held positions in engineering, R&D, and management at Magnaghi Aeronautica SpA, Italian National Research Council, FIAT Research Center, University of Delaware, and The Dow Chemical Company. He has also served as mentor, advisor, consultant, instructor to companies, academia, and government, and as adjunct faculty in Italy and US.