Atnaujinkite slapukų nuostatas

El. knyga: Hard Disk Drive: Mechatronics and Control

(National University of Singapore), (Data Storage Institute, Singapore), (Western Digital Technology, Lake Forest, California, USA)
Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Precision mechatronics and control is relevant to the hard disk drive industry primarily in the contexts of precision control of read-write head, control of spindle motor, and creation of precision magnetic pattern on disks during manufacturing. Mamun (National U. of Singapore), Guo (Western Digital Technology, US), and Bi (Data Storage Institute, Singapore) cover the fundamentals and future challenges of engineering in each of these areas. Annotation ©2007 Book News, Inc., Portland, OR (booknews.com)

The hard disk drive is one of the finest examples of the precision control of mechatronics, with tolerances less than one micrometer achieved while operating at high speed. Increasing demand for higher data density as well as disturbance-prone operating environments continue to test designers' mettle. Explore the challenges presented by modern hard disk drives and learn how to overcome them with Hard Disk Drive: Mechatronics and Control.

Beginning with an overview of hard disk drive history, components, operating principles, and industry trends, the authors thoroughly examine the design and manufacturing challenges. They start with the head positioning servomechanism followed by the design of the actuator servo controller, the critical aspects of spindle motor control, and finally, the servo track writer, a critical technology in hard disk drive manufacturing. By comparing various design approaches for both single- and dual-stage servomechanisms, the book shows the relative pros and cons of each approach. Numerous examples and figures clarify and illustrate the discussion.

Exploring practical issues such as models for plants, noise reduction, disturbances, and common problems with spindle motors, Hard Disk Drive: Mechatronics and Control avoids heavy theory in favor of providing hands-on insight into real issues facing designers every day.
Preface xvii
List of Acronyms
xxiii
List of Figures
xxv
List of Tables
xxxvii
Introduction
1(30)
History of HDD Technology
5(2)
The Early Days
5(1)
Emergence of Desktop Computers
6(1)
Small Form Factor Drives
7(1)
Components of a Hard Disk Drive
7(10)
Head and Disk
8(3)
Electromechanical Components
11(5)
Mechanical and Electronic Components
16(1)
Accessing Data in HDD
17(5)
Arrangement of Data on the Disks
17(1)
Locating Data
18(2)
Track Seek and Track Following
20(1)
Zoned Bit Recording
21(1)
Trend in HDD Industry
22(5)
Areal Density Growth
22(2)
Trend in Drive Form Factor
24(1)
Trend in Data Transfer Rate
25(2)
Alternative Recording Technologies
27(4)
Head Positioning Servomechanism
31(52)
The Servo Loop
31(4)
The Actuator
35(10)
Measurement of Frequency Response
40(3)
Identification of Transfer Function Model
43(2)
Feedback of Position Signal
45(12)
Servo Bursts
46(5)
Servo Demodulation
51(2)
Recent Developments
53(4)
High Frequency Dynamics
57(1)
Noise and Disturbances
58(7)
Repeatable and Non-repeatable Runout
59(2)
Pivot Friction
61(3)
Flex Cable Bias
64(1)
External Shock and Vibration
64(1)
Other Sources of Noise
64(1)
Track Seek Controller
65(18)
Time Optimal Control
66(4)
Proximate Time Optimal Servomechanism
70(5)
Rejection of Input Disturbance
75(3)
Mode Switching Control with Initial Value Compensation
78(2)
Suppression of Residual Vibration
80(3)
Design of Actuator Servo Controller
83(122)
Review of Design Methods
84(4)
Slow Dynamic Systems
85(1)
Fast Dynamic Systems
86(1)
Numerical Search to Find Controller Parameters
86(2)
PID-type Control
88(29)
Basic PID-type Controller
89(5)
Cancelling Actuator Resonances using Notch Filter
94(8)
Cancelling Sensor Noise using Notch Filter
102(2)
Phase Stable Design
104(6)
Inserting a Peak Filter
110(5)
Summary: Application of Different Filters
115(2)
Factors Limiting Servo Performance
117(7)
Limitation of S + T = 1
119(2)
Waterbed Effect
121(2)
Bandwidth Limitations
123(1)
Optimal Control
124(7)
H2 Optimal Control: Continuous-time Case
125(3)
H2 Optimal Control: Discrete-time Case
128(1)
An Application Example
129(2)
Advanced Topics
131(34)
Input Command Shaping
132(4)
Initial Value Compensation
136(4)
RRO Compensation
140(11)
Multirate Control
151(4)
Multisensing Servo
155(10)
Emergence of Dual-Stage Actuator
165(9)
Actuated Suspension
166(1)
Actuated Slider
167(3)
Actuated Head
170(2)
Microactuator for Controlling Head-Media Spacing
172(2)
Control of Dual-Stage Actuator
174(31)
Control Design Specifications
175(1)
Parallel Structure
176(8)
PQ Method
184(2)
Decoupled Master-Slave Structure with Actuator Saturation
186(9)
Experimental Results
195(10)
Spindle Motor Control
205(102)
Magnetic Field Fundamentals
205(12)
Flux
205(1)
Flux Density (Magnetic Induction)
206(1)
Magnetic Field Strength, Permeability and Relative Permeability
206(1)
Energy in Magnetic Field
207(1)
B-H Curve
208(3)
Magnetic Circuit and Magnetomotive Force
211(6)
Electric Motor Fundamentals
217(30)
MMF Generated by Distributed Winding
217(3)
Rotating Magnetic Field, Pole-pair, Speed and Frequency
220(4)
Force and Torque Generated by Magnetic Field
224(12)
Cogging Torque and Unbalanced Magnetic Pull
236(2)
Generation of back-EMF
238(4)
Electrical Degree and Mechanical Degree
242(1)
Armature reaction
243(2)
Conditions of Magnetic Field for Producing Ampere's Torque
245(2)
Spindle Motors used in HDD
247(26)
Special Requirements for HDD Spindle Motor
247(2)
Back-EMF in Spindle Motor
249(2)
Load of Spindle Motor
251(1)
Motor Configuration
252(2)
Magnetic Ring
254(2)
Stator Core
256(1)
Spindle Motor Bearings
256(6)
Winding Structure and the Airgap Field Produced by the Winding
262(6)
Cogging Torque, UMP and Armature Reaction
268(3)
Electromagnetic Power, Electromagnetic Torque and Motor Losses
271(2)
Spindle Motor Drive System
273(34)
What is the BLDC mode?
274(2)
Detection of Rotor Position in Sensorless Drive
276(11)
Starting of Spindle Motor
287(4)
Spindle Motor Driven in Sensorless BLDC Mode
291(10)
Acoustic Noise in Spindle Motor Driven in BLDC Mode
301(6)
Servo Track Writer
307(28)
Introduction
307(3)
HDA Servowriting
310(5)
Control of Tangential Position using Clock Head
310(3)
Control of Radial Position using Mechanical Push-pin
313(1)
Control of Radial Position using Optical Push-pin
314(1)
Media STW
315(2)
Self Servowriting
317(7)
Basic Concept
318(1)
Track Propagation
319(2)
Clock Propagation
321(2)
Concluding Remarks
323(1)
A Laboratory-scale Example
324(7)
Configuration of the System
324(3)
Measurement and Reduction of Disk-Spindle Pack Imbalance
327(1)
Control System
328(2)
Test Results
330(1)
Printing the patterns
331(4)
Nano-Imprint
331(1)
Magnetic Printing
332(3)
Bibliography 335(20)
Index 355
GuoXiao Guo, Abdullah Al Mamun, Chao Bi