Atnaujinkite slapukų nuostatas

El. knyga: Hardy Inequalities on Homogeneous Groups: 100 Years of Hardy Inequalities

  • Formatas: PDF+DRM
  • Serija: Progress in Mathematics 327
  • Išleidimo metai: 02-Jul-2019
  • Leidėjas: Springer Nature Switzerland AG
  • Kalba: eng
  • ISBN-13: 9783030028954
  • Formatas: PDF+DRM
  • Serija: Progress in Mathematics 327
  • Išleidimo metai: 02-Jul-2019
  • Leidėjas: Springer Nature Switzerland AG
  • Kalba: eng
  • ISBN-13: 9783030028954

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This open access book provides an extensive treatment of Hardy inequalities and closely related topics from the point of view of Folland and Stein's homogeneous (Lie) groups. The place where Hardy inequalities and homogeneous groups meet is a beautiful area of mathematics with links to many other subjects. While describing the general theory of Hardy, Rellich, Caffarelli-Kohn-Nirenberg, Sobolev, and other inequalities in the setting of general homogeneous groups, the authors pay particular attention to the special class of stratified groups. In this environment, the theory of Hardy inequalities becomes intricately intertwined with the properties of sub-Laplacians and subelliptic partial differential equations. These topics constitute the core of this book and they are complemented by additional, closely related topics such as uncertainty principles, function spaces on homogeneous groups, the potential theory for stratified groups, and the potential theory for general Hörmander's sums of squares and their fundamental solutions.

This monograph is the winner of the 2018 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics. As can be attested as the winner of such an award, it is a vital contribution to literature of analysis not only because it presents a detailed account of the recent developments in the field, but also because the book is accessible to anyone with a basic level of understanding of analysis. Undergraduate and graduate students as well as researchers from any field of mathematical and physical sciences related to analysis involving functional inequalities or analysis of homogeneous groups will find the text beneficial to deepen their understanding.


Recenzijos

This book is devoted to Hardy inequalities and similar inequalities, Rellich, Sobolev, Caffarelli-Kohn-Nirenberg inequalities on homogeneous Lie groups. The book is a well written exhaustive monograph of the subject. It contains also a rich bibliography. (Leszek Skrzypczak, zbMATH 1428.22011, 2020)

Preface xiii
Introduction 1(10)
1 Analysis on Homogeneous Groups
1.1 Homogeneous groups
11(5)
1.2 Properties of homogeneous groups
16(19)
1.2.1 Homogeneous quasi-norms
16(5)
1.2.2 Polar coordinates
21(2)
1.2.3 Convolutions
23(3)
1.2.4 Polynomials
26(9)
1.3 Radial and Euler operators
35(11)
1.3.1 Radial derivative
35(1)
1.3.2 Euler operator
36(4)
1.3.3 From radial to non-radial inequalities
40(2)
1.3.4 Euler semigroup e-tE*E
42(4)
1.4 Stratified groups
46(25)
1.4.1 Stratified Lie groups
46(2)
1.4.2 Extended sub-Laplacians
48(1)
1.4.3 Divergence theorem
49(4)
1.4.4 Green's identities for sub-Laplacians
53(3)
1.4.5 Green's identities for p-sub-Laplacians
56(1)
1.4.6 Sub-Laplacians with drift
57(3)
1.4.7 Polarizable Carnot groups
60(2)
1.4.8 Heisenberg group
62(3)
1.4.9 Quaternionic Heisenberg group
65(3)
1.4.10 H-type groups
68(3)
2 Hardy Inequalities on Homogeneous Groups
2.1 Hardy inequalities and sharp remainders
71(22)
2.1.1 Hardy inequality and uncertainty principle
71(5)
2.1.2 Weighted Hardy inequalities
76(4)
2.1.3 Hardy inequalities with super weights
80(3)
2.1.4 Hardy inequalities of higher order with super weights
83(1)
2.1.5 Two-weight Hardy inequalities
84(9)
2.2 Critical Hardy inequalities
93(10)
2.2.1 Critical Hardy inequalities
94(4)
2.2.2 Another type of critical Hardy inequality
98(2)
2.2.3 Critical Hardy inequalities of logarithmic type
100(3)
2.3 Remainder estimates
103(18)
2.3.1 Remainder estimates for Lp-weighted Hardy inequalities
103(6)
2.3.2 Critical and subcritical Hardy inequalities
109(1)
2.3.3 A family of Hardy-Sobolev type inequalities on quasi-balls
110(6)
2.3.4 Improved Hardy inequalities on quasi-balls
116(5)
2.4 Stability of Hardy inequalities
121(8)
2.4.1 Stability of Hardy inequalities for radial functions
121(1)
2.4.2 Stability of Hardy inequalities for general functions
122(2)
2.4.3 Stability of critical Hardy inequality
124(5)
3 Rellich, Caffarelli-Kohn-Nirenberg, and Sobolev Type Inequalities
3.1 Rellich inequality
129(35)
3.1.1 Rellich type inequalities in L2
131(6)
3.1.2 Rellich type inequalities in Lp
137(4)
3.1.3 Stability of Rellich type inequalities
141(3)
3.1.4 Higher-order Hardy-Rellich inequalities
144(20)
3.2 Sobolev type inequalities
164(11)
3.2.1 Hardy and Sobolev type inequalities
164(6)
3.2.2 Weighted Lp-Sobolev type inequalities
170(2)
3.2.3 Stubbe type remainder estimates
172(3)
3.3 Caffarelli-Kohn-Nirenberg inequalities
175(16)
3.3.1 Lp-Caffarelli-Kohn-Nirenberg inequalities
177(4)
3.3.2 Higher-order Lp-Caffarelli-Kohn-Nirenberg inequalities
181(3)
3.3.3 New type of Lp-Caffarelli-Kohn-Nirenberg inequalities
184(1)
3.3.4 Extended Caffarelli-Kohn-Nirenberg inequalities
185(6)
4 Fractional Hardy Inequalities
4.1 Gagliardo seminorms and fractional p-sub-Laplacians
191(2)
4.2 Fractional Hardy inequalities on homogeneous groups
193(3)
4.3 Fractional Sobolev inequalities on homogeneous groups
196(6)
4.4 Fractional Gagliardo-Nirenberg inequalities
202(1)
4.5 Fractional Caffarelli-Kohn-Nirenberg inequalities
203(10)
4.6 Lyapunov inequalities on homogeneous groups
213(12)
4.6.1 Lyapunov type inequality for fractional p-sub-Laplacians
214(3)
4.6.2 Lyapunov type inequality for systems
217(4)
4.6.3 Lyapunov type inequality for Riesz potentials
221(4)
4.7 Hardy inequalities for fractional sub-Laplacians on stratified groups
225(12)
4.7.1 Riesz kernels on stratified Lie groups
225(3)
4.7.2 Hardy inequalities for fractional powers of sub-Laplacians
228(4)
4.7.3 Landau-Kolmogorov inequalities on stratified groups
232(5)
5 Integral Hardy Inequalities on Homogeneous Groups
5.1 Two-weight integral Hardy inequalities
237(11)
5.2 Convolution Hardy inequalities
248(14)
5.3 Hardy-Littlewood-Sobolev inequalities on homogeneous groups
262(4)
5.4 Maximal weighted integral Hardy inequality
266(6)
6 Horizontal Inequalities on Stratified Groups
6.1 Horizontal Lp-Caffarelli-Kohn-Nirenberg inequalities
272(7)
6.1.1 Badiale-Tarantello conjecture
275(2)
6.1.2 Horizontal higher-order versions
277(2)
6.2 Horizontal Hardy and Rellich inequalities
279(1)
6.3 Critical horizontal Hardy type inequality
280(3)
6.4 Two-parameter Hardy-Rellich inequalities by factorization
283(9)
6.5 Hardy-Rellich type inequalities and embedding results
292(6)
6.6 Horizontal Sobolev type inequalities
298(4)
6.7 Horizontal extended Caffarelli-Kohn-Nirenberg inequalities
302(2)
6.8 Horizontal Hardy-Rellich type inequalities for p-sub-Laplacians
304(5)
6.8.1 Inequalities for weighted p-sub-Laplacians
306(3)
6.9 Horizontal Rellich inequalities for sub-Laplacians with drift
309(5)
6.10 Horizontal anisotropic Hardy and Rellich inequalities
314(7)
6.10.1 Horizontal Picone identities
314(5)
6.10.2 Horizontal anisotropic Hardy type inequality
319(1)
6.10.3 Horizontal anisotropic Rellich type inequality
319(2)
6.11 Horizontal Hardy inequalities with multiple singularities
321(3)
6.12 Horizontal many-particle Hardy inequality
324(4)
6.13 Hardy inequality with exponential weights
328(4)
7 Hardy-Rellich Inequalities and Fundamental Solutions
7.1 Weighted Lp-Hardy inequalities
332(5)
7.2 Weighted Lp-Rellich inequalities
337(4)
7.3 Two-weight Hardy inequalities and uncertainty principles
341(8)
7.4 Rellich inequalities for sub-Laplacians with drift
349(5)
7.5 Hardy inequalities on the complex affine group
354(4)
7.6 Hardy inequalities for Baouendi-Grushin operators
358(5)
7.7 Weighted Lp-inequalities with boundary terms
363(10)
7.7.1 Hardy and Caffarelli-Kohn-Nirenberg inequalities
363(5)
7.7.2 Rellich inequalities
368(5)
8 Geometric Hardy Inequalities on Stratified Groups
8.1 L2-Hardy inequality on the half-space
373(7)
8.1.1 Examples of Heisenberg and Engel groups
377(3)
8.2 Lp-Hardy inequality on the half-space
380(2)
8.3 L2-Hardy inequality on convex domains
382(3)
8.4 Lp-Hardy inequality on convex domains
385(5)
9 Uncertainty Relations on Homogeneous Groups
9.1 Abstract position and momentum operators
390(4)
9.1.1 Definition and assumptions
390(1)
9.1.2 Examples
391(3)
9.2 Position-momentum relations
394(2)
9.2.1 Further position-momentum identities
394(1)
9.2.2 Heisenberg-Kennard and Pythagorean inequalities
395(1)
9.3 Euler-Coulomb relations
396(2)
9.3.1 Heisenberg-Pauli-Weyl uncertainty principle
396(2)
9.4 Radial dilations - Coulomb relations
398(3)
9.5 Further weighted uncertainty type inequalities
401(4)
10 Function Spaces on Homogeneous Groups
10.1 Euler-Hilbert-Sobolev spaces
405(4)
10.1.1 Poincare type inequality
408(1)
10.2 Sobolev-Lorentz-Zygmund spaces
409(10)
10.3 Generalized Morrey spaces
419(24)
10.3.1 Bessel-Riesz kernels on homogeneous groups
419(2)
10.3.2 Hardy-Littlewood maximal operator in Morrey spaces
421(2)
10.3.3 Bessel-Riesz operators in Morrey spaces
423(9)
10.3.4 Generalized Bessel-Riesz operators
432(3)
10.3.5 Olsen type inequalities for Bessel-Riesz operator
435(1)
10.3.6 Fractional integral operators in Morrey spaces
436(3)
10.3.7 Olsen type inequalities for fractional integral operators
439(2)
10.3.8 Summary of results
441(2)
10.4 Besov type space: Gagliardo-Nirenberg inequalities
443(2)
10.5 Generalized Campanato spaces
445(7)
11 Elements of Potential Theory on Stratified Groups
11.1 Boundary value problems on stratified groups
452(4)
11.2 Layer potentials of the sub-Laplacian
456(6)
11.2.1 Single layer potentials
457(2)
11.2.2 Double layer potential
459(3)
11.3 Traces and Kac's problem for the sub-Laplacian
462(19)
11.3.1 Traces of Newton potential for the sub-Laplacian
463(3)
11.3.2 Powers of the sub-Laplacian
466(6)
11.3.3 Extended Kohn Laplacians on the Heisenberg group
472(4)
11.3.4 Powers of the Kohn Laplacian
476(5)
11.4 Hardy inequalities with boundary terms on stratified groups
481(4)
11.5 Green functions on H-type groups
485(8)
11.5.1 Green functions and Dirichlet problem in wedge domains
486(5)
11.5.2 Green functions and Dirichlet problem in strip domains
491(2)
11.6 p-sub-Laplacian Picone's inequality and consequences
493(9)
12 Hardy and Rellich Inequalities for Sums of Squares
12.1 Assumptions
502(3)
12.1.1 Examples
503(2)
12.2 Divergence formula
505(3)
12.3 Green's identities for sums of squares
508(5)
12.3.1 Consequences of Green's identities
510(1)
12.3.2 Differential forms, perimeter and surface measures
511(2)
12.4 Local Hardy inequalities
513(6)
12.5 Anisotropic Hardy inequalities via Picone identities
519(7)
12.6 Local uncertainty principles
526(5)
12.7 Local Rellich inequalities
531(9)
12.8 Rellich inequalities via Picone identities
540(5)
Bibliography 545(22)
Index 567
Michael Ruzhansky is a Professor of Pure Mathematics at Imperial College London. Durvudkhan Suragan is an Assistant Professor of Mathematics at Nazarbayev University.