Atnaujinkite slapukų nuostatas

El. knyga: Harmonic Analysis on Symmetric Spaces-Higher Rank Spaces, Positive Definite Matrix Space and Generalizations

  • Formatas: EPUB+DRM
  • Išleidimo metai: 26-Apr-2016
  • Leidėjas: Springer-Verlag New York Inc.
  • Kalba: eng
  • ISBN-13: 9781493934089
  • Formatas: EPUB+DRM
  • Išleidimo metai: 26-Apr-2016
  • Leidėjas: Springer-Verlag New York Inc.
  • Kalba: eng
  • ISBN-13: 9781493934089

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This text is an introduction to harmonic analysis on symmetric spaces, focusing on advanced topics such as higher rank spaces, positive definite matrix space and generalizations. It is intended for beginning graduate students in mathematics or researchers in physics or engineering. As with the introductory book entitled "Harmonic Analysis on Symmetric Spaces - Euclidean Space, the Sphere, and the Poincaré Upper Half Plane, the style is informal with an emphasis on motivation, concrete examples, history, and applications. The symmetric spaces considered here are quotients X=G/K, where G is a non-compact real Lie group, such as the general linear group GL(n,P) of all n x n non-singular real matrices, and K=O(n), the maximal compact subgroup of orthogonal matrices. Other examples are Siegel's upper half "plane" and the quaternionic upper half "plane". In the case of the general linear group, one can identify X with the space Pn of n x n positive definite symmetric matrices.

Manycorrections and updates have been incorporated in this new edition. Updates include discussions of random matrix theory and quantum chaos, as well as recent research on modular forms and their corresponding L-functions in higher rank.  Many applications have been added, such as the solution of the heat equation on Pn, the central limit theorem of Donald St.

P. Richards for Pn, results on densest lattice packing of spheres in Euclidean space, and GL(n)-analogs of the Weyl law for eigenvalues of the Laplacian in plane domains.





Topics featured throughout the text include inversion formulas for Fourier transforms, central limit theorems, fundamental domains in X for discrete groups (such as the modular group GL(n,Z) of n x n matrices with integer entries and determinant ±1), connections with the problem of finding densest lattice packings of spheres in Euclidean space, automorphic forms, Hecke operators, L-functions, and the Selberg trace formula and its applications in spectral theory as well as number theory.

Recenzijos

Advanced graduate students and beginners in harmonic analysis on symmetric spaces are surely motivated and attracted by abundant examples, relevant history, and exercises. Excellent references in each section are useful for experts. (Takeshi Kawazoe, Mathematical Reviews, August, 2017)

It is very nice to have available, now, the second, updated version of the entire set . Audrey Terras has done the mathematical community (and not just number theorists and modular formers) a great service: these books are a major contribution on several fronts, including the pedagogical one. They are of course also excellent references for various mathematical themes that are otherwise scattered all through the recent literature. (Michael Berg, MAA Reviews, maa.org, July, 2016)

1 The Space Pn of Positive n × n Matrices
1(336)
1.1 Geometry and Analysis on Pn
1(42)
1.1.1 Introduction
1(8)
1.1.2 Elementary Results
9(3)
1.1.3 Geodesies and Arc Length
12(8)
1.1.4 Measure and Integration on Pn
20(9)
1.1.5 Differential Operators on Pn
29(8)
1.1.6 A List of the Main Formulas Derived in Section 1.1
37(3)
1.1.7 An Application to Multivariate Statistics
40(3)
1.2 Special Functions on Pn
43(65)
1.2.1 Power and Gamma Functions
43(13)
1.2.2 K-Bessel Functions
56(17)
1.2.3 Spherical Functions
73(21)
1.2.4 The Wishart Distribution
94(4)
1.2.5 Richards' Extension of the Asymptotics of Spherical Functions for P3 to Pn for General n
98(10)
1.3 Harmonic Analysis on Pn in Polar Coordinates
108(47)
1.3.1 Properties of the Helgason--Fourier Transform on Pn
108(9)
1.3.2 Beginning of the Discussion of Part (1) of Theorem 1.3.1---Steps 1 and 2
117(5)
1.3.3 End of the Discussion of Part (1) of Theorem 1.3.1---Steps 3 and 4
122(9)
1.3.4 Applications---Richards' Central Limit Theorem for K-Invariant Functions on Pn
131(5)
1.3.5 Quantum Chaos and Random Matrix Theory
136(16)
1.3.6 Other Directions in the Labyrinth
152(3)
1.4 Fundamental Domains for Pn/GL(n, Z)
155(80)
1.4.1 Introduction
156(14)
1.4.2 Minkowski's Fundamental Domain
170(22)
1.4.3 Grenier's Fundamental Domain
192(22)
1.4.4 Integration over Fundamental Domains
214(21)
1.5 Maass Forms for GL(n, Z) and Harmonic Analysis on Pn/GL(n, Z)
235(102)
1.5.1 Analytic Continuation of Eisenstein Series by the Method of Inserting Larger Parabolic Subgroups
236(21)
1.5.2 Hecke Operators and Analytic Continuation of L-Functions Associated with Maass Forms by the Method of Theta Functions
257(18)
1.5.3 Fourier Expansions of Eisenstein Series
275(34)
1.5.4 Update on Maass Cusp Forms for SL(3, Z) and L-Functions Plus Truncating Eisenstein Series
309(10)
1.5.5 Remarks on Harmonic Analysis on the Fundamental Domain
319(13)
1.5.6 Finite and Other Analogues
332(5)
2 The General Noncompact Symmetric Space
337(114)
2.1 Geometry and Analysis on G/K
337(64)
2.1.1 Symmetric Spaces, Lie Groups, and Lie Algebras
337(13)
2.1.2 Examples of Symmetric Spaces
350(7)
2.1.3 Cartan, Iwasawa, and Polar Decompositions, Roots
357(17)
2.1.4 Geodesies and the Weyl Group
374(8)
2.1.5 Integral Formulas
382(8)
2.1.6 Invariant Differential Operators
390(4)
2.1.7 Special Functions and Harmonic Analysis on Symmetric Spaces
394(3)
2.1.8 An Example of a Symmetric Space of Type IV: The Quaternionic Upper Half 3-Space
397(4)
2.2 Geometry and Analysis on Γ\G/K
401(50)
2.2.1 Fundamental Domains
401(15)
2.2.2 Automorphic Forms
416(26)
2.2.3 Trace Formulas
442(9)
References 451(26)
Index 477
Audrey Terras is currently Professor Emerita of Mathematics at the University of California at San Diego.