Atnaujinkite slapukų nuostatas

El. knyga: Heat Kernel on Lie Groups and Maximally Symmetric Spaces

  • Formatas: EPUB+DRM
  • Serija: Frontiers in Mathematics
  • Išleidimo metai: 25-Apr-2023
  • Leidėjas: Birkhauser Verlag AG
  • Kalba: eng
  • ISBN-13: 9783031274510
  • Formatas: EPUB+DRM
  • Serija: Frontiers in Mathematics
  • Išleidimo metai: 25-Apr-2023
  • Leidėjas: Birkhauser Verlag AG
  • Kalba: eng
  • ISBN-13: 9783031274510

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This monograph studies the heat kernel for the spin-tensor Laplacians on Lie groups and maximally symmetric spaces. It introduces many original ideas, methods, and tools developed by the author and provides a list of all known exact results in explicit form – and derives them – for the heat kernel on spheres and hyperbolic spaces. Part I considers the geometry of simple Lie groups and maximally symmetric spaces in detail, and Part II discusses the calculation of the heat kernel for scalar, spinor, and generic Laplacians on spheres and hyperbolic spaces in various dimensions. This text will be a valuable resource for researchers and graduate students working in various areas of mathematics – such as global analysis, spectral geometry, stochastic processes, and financial mathematics – as well in areas of mathematical and theoretical physics – including quantum field theory, quantum gravity, string theory, and statistical physics.

Part I. Manifolds.
Chapter. 1. Introduction.
Chapter. 2. Geometry of
Simple Groups.
Chapter. 3. Geometry of SU(2).
Chapter. 4. Maximally
Symmetric Spaces.
Chapter.
5. Three-dimensional Maximally Symmetric Spaces.-
Part II: Heat Kernel.- Chapter. 6. Scalar Heat Kernel.
Chapter. 7. Spinor
Heat Kernel.
Chapter. 8. Heat Kernel in Two Dimensions.
Chapter. 9. Heat
Kernel on S3 and H3.
Chapter. 10. Algebraic Method for the Heat Kernel.-
Appendix A.- References.- Index.
Dr. Ivan Avramidi is an accomplished researcher with more than 30 years of research experience in mathematical physics. He has a cutting-edge expertise in asymptotic analysis of partial differential equations on manifolds and the applications of these methods to quantum physics, differential geometry and financial mathematics. His research program spans such areas as global analysis, geometric analysis, mathematical physics, spectral geometry, differential geometry, quantum field theory, quantum gravity and financial mathematics. Dr. Avramidi has an extensive publication record including two books and more than 60 refereed papers.  Dr. Ivan Avramidi got his Ph.D. in Theoretical and Mathematical Physics at the Lomonosov Moscow State University (Russia) in 1987. He held several research scientist positions at Rostov State University (1987-1990), University of Karlsruhe (1989-1990), University of Naples (1995), University of Greifswald (1993-1998) and a visiting faculty position at the University of Iowa (1997-1999); since 1999 he is a Professor of Mathematics at the New Mexico Institute of Mining and Technology. Dr. Avramidi was awarded Research Fellowships by Alexander von Humboldt Foundation (1993-1996 and 2018) and by the DAAD (German Academic Exchange Service) (1989-1990). His research was supported by the Deutsche Forschungsgemeinschaft (German Science Foundation) and the Department of Science and Higher Education (Russia).