Atnaujinkite slapukų nuostatas

El. knyga: Henstock-Kurzweil Integration on Euclidean Spaces [World Scientific e-book]

(Nie, Ntu, S'pore)
  • Formatas: 324 pages
  • Serija: Series In Real Analysis 12
  • Išleidimo metai: 18-Mar-2011
  • Leidėjas: World Scientific Publishing Co Pte Ltd
  • ISBN-13: 9789814324595
  • World Scientific e-book
  • Kaina: 122,89 €*
  • * this price gives unlimited concurrent access for unlimited time
  • Formatas: 324 pages
  • Serija: Series In Real Analysis 12
  • Išleidimo metai: 18-Mar-2011
  • Leidėjas: World Scientific Publishing Co Pte Ltd
  • ISBN-13: 9789814324595
The Henstock–Kurzweil integral, which is also known as the generalized Riemann integral, arose from a slight modification of the classical Riemann integral more than 50 years ago. This relatively new integral is known to be equivalent to the classical Perron integral; in particular, it includes the powerful Lebesgue integral. This book presents an introduction of the multiple Henstock–Kurzweil integral. Along with the classical results, this book contains some recent developments connected with measures, multiple integration by parts, and multiple Fourier series. The book can be understood with a prerequisite of advanced calculus.
Preface v
1 The one-dimensional Henstock-Kurzweil integral
1(20)
1.1 Introduction and Cousin's Lemma
1(3)
1.2 Definition of the Henstock-Kurzweil integral
4(4)
1.3 Simple properties
8(6)
1.4 Saks-Henstock Lemma
14(6)
1.5 Notes and Remarks
20(1)
2 The multiple Henstock-Kurzweil integral
21(32)
2.1 Preliminaries
21(4)
2.2 The Henstock-Kurzweil integral
25(3)
2.3 Simple properties
28(7)
2.4 Saks-Henstock Lemma
35(8)
2.5 Fubini's Theorem
43(8)
2.6 Notes and Remarks
51(2)
3 Lebesgue integrable functions
53(54)
3.1 Introduction
53(3)
3.2 Some convergence theorems for Lebesgue integrals
56(7)
3.3 μm-measurable sets
63(7)
3.4 A characterization of μm-measurable sets
70(3)
3.5 μm-measurable functions
73(6)
3.6 Vitali Covering Theorem
79(3)
3.7 Further properties of Lebesgue integrable functions
82(2)
3.8 The Lp spaces
84(4)
3.9 Lebesgue's criterion for Riemann integrability
88(3)
3.10 Some characterizations of Lebesgue integrable functions
91(10)
3.11 Some results concerning one-dimensional Lebesgue integral
101(3)
3.12 Notes and Remarks
104(3)
4 Further properties of Henstock-Kurzweil integrable functions
107(28)
4.1 A necessary condition for Henstock-Kurzweil integrability
107(1)
4.2 A result of Kurzweil and Jarnik
108(9)
4.3 Some necessary and sufficient conditions for Henstock-Kurzweil integrability
117(2)
4.4 Harnack extension for one-dimensional Henstock-Kurzweil integrals
119(9)
4.5 Other results concerning one-dimensional Henstock-Kurzweil integral
128(4)
4.6 Notes and Remarks
132(3)
5 The Henstock variational measure
135(34)
5.1 Lebesgue outer measure
135(3)
5.2 Basic properties of the Henstock variational measure
138(7)
5.3 Another characterization of Lebesgue integrable functions
145(3)
5.4 A result of Kurzweil and Jarnik revisited
148(8)
5.5 A measure-theoretic characterization of the Henstock-Kurzweil integral
156(8)
5.6 Product variational measures
164(4)
5.7 Notes and Remarks
168(1)
6 Multipliers for the Henstock-Kurzweil integral
169(36)
6.1 One-dimensional integration by parts
169(6)
6.2 On functions of bounded variation in the sense of Vitali
175(5)
6.3 The m-dimensional Riemann-Stieltjes integral
180(4)
6.4 A multiple integration by parts for the Henstock-Kurzweil integral
184(3)
6.5 Kurzweil's multiple integration by parts formula for the Henstock-Kurzweil integral
187(7)
6.6 Riesz Representation Theorems
194(4)
6.7 Characterization of multipliers for the Henstock-Kurzweil integral
198(2)
6.8 A Banach-Steinhaus Theorem for the space of Henstock-Kurzweil integrable functions
200(2)
6.9 Notes and Remarks
202(3)
7 Some selected topics in trigonometric series
205(28)
7.1 A generalized Dirichlet test
205(5)
7.2 Fourier series
210(3)
7.3 Some examples of Fourier series
213(5)
7.4 Some Lebesgue integrability theorems for trigonometric series
218(8)
7.5 Boas' results
226(3)
7.6 On a result of Hardy and Littlewood concerning Fourier series
229(3)
7.7 Notes and Remarks
232(1)
8 Some applications of the Henstock-Kurzweil integral to double trigonometric series
233(62)
8.1 Regularly convergent double series
233(7)
8.2 Double Fourier series
240(6)
8.3 Some examples of double Fourier series
246(4)
8.4 A Lebesgue integrability theorem for double cosine series
250(7)
8.5 A Lebesgue integrability theorem for double sine series
257(7)
8.6 A convergence theorem for Henstock-Kurzweil integrals
264(6)
8.7 Applications to double Fourier series
270(4)
8.8 Another convergence theorem for Henstock-Kurzweil integrals
274(4)
8.9 A two-dimensional analogue of Boas' theorem
278(9)
8.10 A convergence theorem for double sine series
287(3)
8.11 Some open problems
290(4)
8.12 Notes and Remarks
294(1)
Bibliography 295(10)
Points, intervals and partitions 305(2)
Functions, integrals and function spaces 307(2)
Measures and outer measures 309(2)
Miscellaneous 311(2)
General index 313