Atnaujinkite slapukų nuostatas

El. knyga: Hidden Markov Models: Theory and Implementation using MATLAB(R)

(Universidade de Trįs-os-Montes e Alto Douro, Escola de Ciźncias e Tecnologia, Vila Real, Portugal), (INESC TEC Technology and Science, Porto, Portugal), (Instituto Politécnico de Braganēa, Portugal)
  • Formatas: 296 pages
  • Išleidimo metai: 02-Aug-2019
  • Leidėjas: CRC Press
  • Kalba: eng
  • ISBN-13: 9780429536632
  • Formatas: 296 pages
  • Išleidimo metai: 02-Aug-2019
  • Leidėjas: CRC Press
  • Kalba: eng
  • ISBN-13: 9780429536632

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book presents, in an integrated form, both the analysis and synthesis of three different types of hidden Markov models. Unlike other books on the subject, it is generic and does not focus on a specific theme, e.g. speech processing. Moreover, it presents the translation of hidden Markov models concepts from the domain of formal mathematics into computer codes using MATLAB®. The unique feature of this book is that the theoretical concepts are first presented using an intuition-based approach followed by the description of the fundamental algorithms behind hidden Markov models using MATLAB®. This approach, by means of analysis followed by synthesis, is suitable for those who want to study the subject using a more empirical approach.





Key Selling Points:















Presents a broad range of concepts related to Hidden Markov Models (HMM), from simple problems to advanced theory





Covers the analysis of both continuous and discrete Markov chains





Discusses the translation of HMM concepts from the realm of formal mathematics into computer code





Offers many examples to supplement mathematical notation when explaining new concepts

Recenzijos

"A distinguishing feature of this book is that it provides the MATLAB code for the various algorithms covered. This would make it an excellent text for a course in the subject, as it would enable the students to experiment themselves with the algorithms encountered. Another good feature is that each chapter ends with a clear summary. All libraries serving programs in computer science should acquire this volume, and it would be worth considering as a textbook by instructors teaching courses on hidden Markov models."

R. Bharath, emeritus, Northern Michigan University in CHOICE magazine "A distinguishing feature of this book is that it provides the MATLAB code for the various algorithms covered. This would make it an excellent text for a course in the subject, as it would enable the students to experiment themselves with the algorithms encountered. Another good feature is that each chapter ends with a clear summary. All libraries serving programs in computer science should acquire this volume, and it would be worth considering as a textbook by instructors teaching courses on hidden Markov models."

R. Bharath, emeritus, Northern Michigan University in CHOICE magazine

Introduction



1. Probability theory and stochastic processes



2. Discrete hidden Markov models



3. Continuous hidden Markov models



4. Autoregressive Markov models



5. Selected Applications



Glossary



References



Index
Joćo Paulo Coelho is an adjunct professor, and currently the Electrical Engineering course director, at the Polytechnic Institute of Braganēa. He is also a researcher at CeDRI and holds a Ph.D. degree in computational intelligence applied to agricultural greenhouses. He has been involved, as a researcher member, in several scientific projects at both the national and European level. His research interests include control systems design, machine learning, electronic instrumentation, embedded systems and discrete-event computer simulation.





Tatiana M. Pinho graduated in Energy Engineering from the University of Trįs-os-Montes e Alto Douro (UTAD), Portugal in 2011 and received the MSc degree in Energy Engineering from UTAD in 2013. In 2018, she received the Ph.D. degree in Electrical and Computer Engineering in UTAD and INESC TEC Technology and Science, supported by the FCT. Presently she is a postdoctoral researcher at the INESC TEC and her research interests include systems modeling and adaptive control.





José Boaventura-Cunha graduated in Electronics and Telecommunications Engineering and has a Ph.D. degree in Electrical and Computer Engineering. Presently he is an Associate Professor with habilitation at the UTAD University, a senior researcher at the INESC-TEC and member of IFAC and IEEE. He has coordinated/participated in several national and international research projects aiming the development of new instrumentation, modelling and control technologies applied to agriculture. His research interests include modeling, system identification and adaptive control.