Atnaujinkite slapukų nuostatas

El. knyga: High-Frequency Isolated Bidirectional Dual Active Bridge DC-DC Converters with Wide Voltage Gain

  • Formatas: PDF+DRM
  • Serija: CPSS Power Electronics Series
  • Išleidimo metai: 17-May-2018
  • Leidėjas: Springer Verlag, Singapore
  • Kalba: eng
  • ISBN-13: 9789811302596
  • Formatas: PDF+DRM
  • Serija: CPSS Power Electronics Series
  • Išleidimo metai: 17-May-2018
  • Leidėjas: Springer Verlag, Singapore
  • Kalba: eng
  • ISBN-13: 9789811302596

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Written by experts, this book is based on recent research findings in high-frequency isolated bidirectional DC-DC converters with wide voltage range. It presents advanced power control methods and new isolated bidirectional DC-DC topologies to improve the performance of isolated bidirectional converters. Providing valuable insights, advanced methods and practical design guides on the DC-DC conversion that can be considered in applications such as microgrid, bidirectional EV chargers, and solid state transformers, it is a valuable resource for researchers, scientists, and engineers in the field of isolated bidirectional DC-DC converters.

1 Introduction
1(24)
1.1 Application of Bidirectional DC-DC Converter
1(4)
1.1.1 Energy Storage System for Microgrid or Smart Grid
2(1)
1.1.2 Automotive Applications
3(1)
1.1.3 SST Application
4(1)
1.2 Classification of Bidirectional DC-DC Converter
5(2)
1.2.1 Non-isolated and Isolated DC-DC Converter
5(2)
1.3 Isolated Bidirectional DC-DC Converter
7(5)
1.3.1 PWM Controlled, Frequency Controlled and Phase Shift Controlled Bidirectional DC-DC Converter
7(2)
1.3.2 Current-Fed DAB Converter
9(2)
1.3.3 Multi-level DAB DC-DC Converter
11(1)
1.4 Research Literature of DAB Converters
12(4)
1.4.1 Basic Principle of DAB Converters
12(1)
1.4.2 Control of Voltage-Fed DAB Converters
13(2)
1.4.3 Control of Current-Fed DAB Converters
15(1)
1.5 Key Issues of DAB Converter
16(1)
1.5.1 ZVS Range
16(1)
1.5.2 Non-active Power and Current Stress
16(1)
1.5.3 Wide Voltage Gain
17(1)
1.6 Organization of the Book
17(2)
References
19(6)
2 Unified Boundary Trapezoidal Modulation Control for Dual Active Bridge DC-DC Converter
25(22)
2.1 Fixed Duty Cycle Compensation and Magnetizing Current Design for DAB DC-DC Converter with Trapezoidal Modulation
25(7)
2.1.1 Conventional Trapezoidal Modulation (TZM)
26(1)
2.1.2 ZVS Conditions for DAB Converter with Conventional TZM Control
27(2)
2.1.3 Proposed Fixed Duty Cycle Compensation
29(2)
2.1.4 Magnetizing Current Design to Achieve ZVS for S7and S8
31(1)
2.2 Power Transfer Characteristic and Selections of Duty Cycles and Phase Shift Ratio
32(5)
2.2.1 Selections of Duty Cycles and Phase Shift Ratio for Minimum RMS Circulating Current
33(3)
2.2.2 Maximum Power Transfer Point
36(1)
2.3 Boundary TZM Control and Its Implementation
37(2)
2.3.1 Boundary TZM Control
37(1)
2.3.2 Implementation of Boundary TZM Control
38(1)
2.4 Experimental Verification
39(7)
2.5 Conclusion
46(1)
References
46(1)
3 Hybrid-Bridge-Based DAB Converter with Wide Voltage Conversion Gain
47(24)
3.1 Working Principle of Hybrid-Bridge-Based DAB Converter
47(5)
3.1.1 Topology and Modulation Scheme for Hybrid-Bridge-Based DAB Converter
48(2)
3.1.2 Working Stages of the Converter
50(2)
3.2 ZVS Conditions and Power Control
52(5)
3.2.1 Current Range for ZVS
52(3)
3.2.2 Proposed VM Control to Ensure Wide ZVS Range
55(2)
3.3 Converter Performance with Proposed Voltage Match Control
57(3)
3.3.1 Voltage Gain Under VM Control
57(1)
3.3.2 Power Transfer Characteristics with VM Control
58(2)
3.3.3 Switches ZVS Discussion
60(1)
3.4 Implementation of the Proposed Control
60(1)
3.5 Comparison
61(4)
3.5.1 General Comparisons
61(1)
3.5.2 Comparison of Inductor RMS Current and Total Conduction Loss
62(3)
3.6 Experimental Verification
65(4)
3.7 Discussion and Future Work
69(1)
3.8 Conclusion
69(1)
References
70(1)
4 Dual-Transformer-Based DAB Converter with Wide ZVS Range for Wide Voltage Gain Application
71(26)
4.1 Converter Topology and Operation Principle
71(4)
4.1.1 Topology and Modulation Schedule Using Phase Shift Control
72(1)
4.1.2 Working Stages of the Converter
73(2)
4.2 ZVS Constraints and Control
75(5)
4.2.1 Current Range for ZVS
75(3)
4.2.2 Proposed Control Law to Achieve Full Range of ZVS for S1, S2, S5 and S6
78(1)
4.2.3 Transformer Turns Ratio Consideration and Extension of ZVS Range for S3 and S4
79(1)
4.3 Converter Characteristics with Proposed Control
80(2)
4.3.1 Power Characteristics Under Proposed Control
80(1)
4.3.2 Implementation of the Proposed Control
81(1)
4.4 Design Consideration and Comparison
82(3)
4.4.1 Leakage Inductance Design
83(1)
4.4.2 Turns Ratios
83(2)
4.5 Comparison
85(3)
4.5.1 Device RMS and Peak Current Comparison
85(1)
4.5.2 ZVS Range Comparison
86(1)
4.5.3 Transformer Size Comparison
86(2)
4.6 Experimental Verification
88(6)
4.7 Conclusion
94(1)
References
95(2)
5 Blocking-Cap-Based DAB Converters
97(18)
5.1 Topology of the Converter
97(1)
5.2 Typical Waveforms of the Converter
97(2)
5.3 Working Stages of the Converter
99(4)
5.3.1 Full-Bridge Operation Mode
99(2)
5.3.2 Half-Bridge Operation Mode
101(2)
5.4 ZVS Conditions of the Converter
103(2)
5.5 Power Transfer Characteristic and ZVS Region Comparison
105(4)
5.5.1 Power Transfer Characteristic
105(2)
5.5.2 ZVS Region
107(1)
5.5.3 RMS Current Comparison
108(1)
5.6 Experimental Results
109(4)
5.6.1 Rated Load (1 kW)
109(2)
5.6.2 Light Load (270 W)
111(2)
5.7 Summary
113(1)
References
114(1)
6 Three-Level Bidirectional DC-DC Converter with an Auxiliary Inductor in Adaptive Working Mode for Full-Operation Zero-Voltage Switching
115(34)
6.1 Three-Level Bidirectional DAB Converter Full-Operation Zero-Voltage Switching
115(8)
6.2 Key Feature and Modulation Scheme of the Converter
123(13)
6.2.1 Voltage Balance of the Flying Capacitor
123(2)
6.2.2 ZVS Analyses for Q1-Q4
125(1)
6.2.3 ZVS Analyses for Q5-Q8
126(5)
6.2.4 Modulation Trajectory
131(3)
6.2.5 Conduction Loss Comparison
134(2)
6.3 Experimental Verifications
136(8)
6.4 Conclusion
144(3)
References
147(2)
7 A Current-Fed Dual Active Bridge DC-DC Converter Using Dual PWM Plus Double Phase Shifted Control
149(24)
7.1 Introduction to Current-Fed Dual Active Bridge
149(1)
7.2 Mode Analysis with the Proposed Control Strategy
150(6)
7.3 Current Stress Comparison with PPS and DPDPS Control
156(5)
7.3.1 Peak Current Analysis
160(1)
7.3.2 RMS Current Analysis
161(1)
7.4 Implementation of the Control Strategy
161(1)
7.5 Experimental Results
162(9)
7.5.1 Prototype
162(2)
7.5.2 Boost Mode Operation
164(3)
7.5.3 Buck Mode Operation
167(1)
7.5.4 Operation Mode Transition and Efficiency Comparison
168(3)
7.6 Conclusion
171(1)
References
171(2)
8 High Efficiency Current-Fed Dual Active Bridge DC-DC Converter with ZVS Achievement Throughout Full Range of Load Using Optimized Switching Patterns
173(26)
8.1 Operation Principle of the Control
173(13)
8.1.1 Topology of the Current-Fed DAB and the Operating Modes with Voltage Matching Control
174(3)
8.1.2 Power Expressions of the Proposed Control
177(2)
8.1.3 Working Principle of the Proposed Switching Pattern
179(4)
8.1.4 Discussion of the Circulating Current
183(3)
8.2 Soft Switching Condition
186(4)
8.2.1 Resonant Process Analysis
186(2)
8.2.2 Soft Switching Condition
188(2)
8.3 Experimental Results
190(6)
8.3.1 Prototype and Specifications
190(1)
8.3.2 Steady-State Operation
190(1)
8.3.3 Soft Switching Waveforms
191(2)
8.3.4 Dynamical Operation
193(2)
8.3.5 Conversion Efficiency and Loss Breakdown Analysis
195(1)
8.4 Conclusion
196(1)
References
196(3)
9 A ZVS Bidirectional Three-Level DC-DC Converter with Direct Current Slew Rate Control of Leakage Inductance Current
199(24)
9.1 Introduction to Current-Fed Three-Level DAB Converter
199(1)
9.2 Proposed Bidirectional DC-DC Converter
200(4)
9.3 Comparison of PPS and DCSR Controls
204(8)
9.3.1 Physical Turns Ratio Mismatch Considerations
204(3)
9.3.2 Actual Equivalent Circuit
207(2)
9.3.3 RMS Current Comparison
209(2)
9.3.4 The Peak Current of Main Switches
211(1)
9.4 Implementation of the DCSR Control
212(2)
9.4.1 Voltage Balance Issue for the Three-Level HVS
212(1)
9.4.2 Implementation of the Proposed Control Strategy
212(2)
9.5 Experimental Results
214(7)
9.6 Conclusion
221(1)
References
222(1)
10 A Bidirectional Three-Level DC-DC Converter with Reduced Circulating Loss and Fully ZVS Achievement for Battery Charging/Discharging
223(30)
10.1 Converter Mode Analysis with Proposed Control Strategy
223(7)
10.2 Performance Analysis and Discussion
230(15)
10.2.1 Derivation of System Output Power
230(2)
10.2.2 Clamp Voltage and Voltage Gain of Converter
232(1)
10.2.3 Design Considerations
233(3)
10.2.4 Comparison of Voltage Matching Mode and Mismatching Mode
236(5)
10.2.5 Soft-Switching Condition
241(4)
10.3 Experimental Results
245(6)
10.3.1 Prototype
245(1)
10.3.2 Operation Waveforms of Charging Mode and Discharging Mode
245(1)
10.3.3 Soft-Switching Waveforms of Discharging Mode and Charging Mode
246(5)
10.4 Conclusion
251(1)
References
252(1)
11 A Current-Fed Hybrid Dual Active Bridge DC-DC Converter for Fuel Cell Power Conditioning System with Reduced Input Current Ripple
253(26)
11.1 Converter Topology and Operating Principles
253(4)
11.1.1 Proposed Converter
254(1)
11.1.2 Modulation Strategy
254(1)
11.1.3 Typical Operating Periods
255(2)
11.2 ZVS Conditions and Control Strategy
257(4)
11.2.1 ZVS Conditions
257(1)
11.2.2 Control Strategy
258(2)
11.2.3 Control Diagram Implementation
260(1)
11.3 Characteristic Analysis and Parameter Design
261(4)
11.3.1 Power Transfer Characteristics
261(1)
11.3.2 Input Inductance Design
262(1)
11.3.3 Clamping Capacitor Design
263(1)
11.3.4 High-Frequency Current Ripple Analysis
264(1)
11.4 Simulation Results
265(2)
11.5 Experimental Results
267(10)
11.5.1 Prototype
267(1)
11.5.2 Experimental Waveforms for Positive Power Flow
267(5)
11.5.3 Experimental Waveforms for Negative Power Flow
272(5)
11.6 Conclusion
277(1)
References
278(1)
12 Dynamic Response Improvements of Parallel-Connected Bidirectional DC-DC Converters
279
12.1 The Drive System Overview and DPDPS Control
279(3)
12.2 Current-Sharing and Small-Signal Modeling
282(7)
12.2.1 Implementation of the Current Sharing
282(1)
12.2.2 Small-Signal Modeling
283(3)
12.2.3 Analysis of the Current Sharing
286(1)
12.2.4 System Stability Analysis
287(2)
12.3 Feed-Forward Effect on the Dynamic Performance
289(4)
12.3.1 Design of the Feed-Forward Coefficient Ko
289(2)
12.3.2 Feed-Forward Effect on the Dynamic Performance
291(1)
12.3.3 Simulation Verification
291(2)
12.4 Leakage Inductance Effect on the Steady State and Dynamic Performance
293(3)
12.4.1 Leakage Inductance Value Optimal Design and Its Effect on the Steady-State Performance
293(2)
12.4.2 Feed-Forward Effect on the Dynamic Performance
295(1)
12.5 Experimental Verifications
296(6)
12.5.1 Prototype
296(1)
12.5.2 Steady-State Operation
296(3)
12.5.3 Soft Switching Waveforms
299(1)
12.5.4 Dynamic Performance with Inverter Driven AC Motor
300(1)
12.5.5 Experimental Results of Current Sharing
301(1)
12.5.6 Efficiency
301(1)
12.6 Conclusion
302(1)
References
302
Deshang Sha is currently a tenured associate professor at the School of Automation, Beijing Institute of Technology, Beijing, China. From 2012 to 2013, he was a visiting scholar at the Future Energy Electronics Center (FEEC), Virginia Polytechnic Institute and State University, Blacksburg, USA. His research interests include high-frequency isolated and high-efficiency power conversion, power electronics application in renewable energy and micro-grids. He has published over 40 papers in international journals, of which more than 20 were published in IEEE Transactions. He has earned 12 patents in the field of power electronics and has published one other book. In 2013, he received the IEEE Transactions on Power Electronics outstanding reviewer award. 





Guo Xu received his B.S. degree in Electrical Engineering and Automation from the Beijing Institute of Technology, Beijing, China, in 2012, where he is currently working towards his Ph.D. degree in Electrical Automation. From 2016 to 2017, he was a visiting student at the Center of Power Electronics System (CPES), Virginia Polytechnic Institute and State University, Blacksburg. His research interests include modeling and control of power electronics converters and high-power density converters.