Atnaujinkite slapukų nuostatas

El. knyga: High Pressure in Semiconductor Physics II

Series edited by (WILLARDSON CONSULTING SPOKANE, WASHINGTON), Volume editor (Harvard University), Series edited by (Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg, Germany), Series edited by (UNIPRESS, Warczawa, Poland)
  • Formatas: PDF+DRM
  • Serija: Semiconductors and Semimetals
  • Išleidimo metai: 17-Aug-1998
  • Leidėjas: Academic Press Inc
  • Kalba: eng
  • ISBN-13: 9780080864532
  • Formatas: PDF+DRM
  • Serija: Semiconductors and Semimetals
  • Išleidimo metai: 17-Aug-1998
  • Leidėjas: Academic Press Inc
  • Kalba: eng
  • ISBN-13: 9780080864532

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise indeed that this tradition will be maintained and even expanded.
Reflecting the truly interdisciplinary nature of the field that the series covers, the volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in modern industry.
Volumes 54 and 55 present contributions by leading researchers in the field of high pressure semiconductors. Edited by T. Suski and W. Paul, these volumes continue the tradition of well-known but outdated publications such as Brigman's The Physics of High Pressure (1931 and 1949) and High Pressure Physics and Chemistry edited by Bradley.
Volumes 54 and 55 reflect the industrially important recent developments in research and applications of semiconductor properties and behavior under desirable risk-free conditions at high pressures. These developments include the advent of the diamond anvil cell technique and the availability of commercial piston–cylinder apparatus operating at high hydrostatic pressures. These much-needed books will be useful to both researchers and practitioners in applied physics, materials science, and engineering.
Preface ix
List of Contributors
xi
Parallel Transport in Low-Dimensional Semiconductor Structures
D. K. Maude
J. C. Portal
Introduction
1(3)
The Effect of Pressure
4(17)
Pressure Effects on 2D Electronic Properties of Semiconductor Structures
4(14)
Tuning of the Lande g-Factor by Hydrostatic Pressure
18(3)
Integer Quantum Hall Effect
21(4)
Overview
21(1)
Spin Texture Excitations (Skyrmions)
22(3)
Zero Hall Resistance in the Semimetallic GaSb/InAs System
25(1)
Fractional Quantum Hall Effect
25(5)
Introduction
25(1)
Composite Fermions
26(4)
Magnetophonon Resonance Effect Under Hydrostatic Pressure in GaAs/Al0.28 Ga0.72 As, Ga0.47 In0.53 As/Al0.48 In0.52, and in Ga0.47 In0.53 As/InP Heterojunctions
30(15)
Pressure Dependence of the Effective Mass
31(6)
Amplitude of the Oscillations and γ Damping Factor
37(2)
Acknowledgments
39(1)
References
40(5)
Tunneling Under Pressure: High-Pressure Studies of Vertical Transport in Semiconductor Heterostructures
P. C. Klipstein
Introduction
45(2)
Theory and Calculation
47(17)
Ricco and Azbel Formulae
47(1)
Transfer Matrix Method
48(3)
Calculating the I-V Characteristic
51(3)
Space Charge
54(3)
Band Mixing
57(6)
Strain Due to Pseudomorphic Growth
63(1)
Experimental Techniques
64(2)
High Pressure Studies of Negative Differential Resistance
66(44)
Early Days
66(2)
Resonant Tunneling in Single-, Double-, and Multiple-Barrier Heterostructures
68(33)
Resonant Interband Tunneling
101(9)
Concluding Remarks
110(8)
Acknowledgments
111(1)
References
112(6)
Phonons, Strains, and Pressure in Semiconductors
Evangelos Anastassakis
Manuel Cardona
Introduction
118(9)
Historical Review of Strain Effects
118(3)
Effects of Stress and Strain on Electrons and Phonons in Crystals
121(6)
Background
127(17)
Phonons and Crystal Symmetry
127(5)
Strains, Stresses, and Crystal Symmetry
132(6)
Experimental Techniques for Applying Stresses
138(6)
Effects of Hydrostatic Pressure on Optical Phonons
144(19)
Mode Gruneisen Parameters
148(4)
Thermal Expansion: Quantum Effects at T = 0
152(3)
Phonon Linewidths and Lifetimes
155(1)
Phase Transitions
156(7)
Effects of Strains on Optical Phonons
163(36)
Phonon Deformation Potentials
164(3)
Phonon Secular Equation
167(4)
Control Experiments
171(20)
Theoretical Models and Trends of Phonon Deformation Potentials
191(3)
Other Uses of Phonon Deformation Potentials
194(5)
Strain Characterization of Heterojunctions and Superlattices
199(21)
Elastic and Piezoelectric Considerations in Heterojunctions and Superlattices
199(6)
Pressure and Temperature Dependence of Strains
205(8)
Characterization of Strains through Raman Spectroscopy
213(7)
Concluding Remarks
220(16)
Acknowledgments
222(1)
Appendix
222(2)
References
224(12)
Effects of External Uniaxial Stress on the Optical Properties of Semiconductors and Semiconductor Microstructures
Fred H. Pollak
Introduction
236(2)
Effects of Homogeneous Deformation on Electronic Energy Levels
238(26)
Critical Points at k = 0
238(16)
Bands at k ≠ 0
254(10)
Determination of Intervalley Electron-Phonon and Hole-Phonon Interactions in Indirect Gap Semiconductors
264(2)
Piezo-Optical Response of Ge and GaAs in the Opaque Region
266(4)
Intrinsic Piezobirefringence in the Transparent Region
270(1)
Effects of External Stress on Quantum States
271(24)
Effects of X Parallel to [ 001] and [ 011] (Piezoelectric Effect) on an In0.21 Ga0.79 As/GaAs (100) Single-Quantum-Well Structure
272(5)
Effects of X Parallel to [ 001] and [ 011] (Piezoelectric Effect) on a GaAs/GaAlAs (100) Single-Quantum-Well Structure
277(1)
Determination of the Symmetry of Excitons Associated with Miniband Dispersion in InGaAs/GaAs (100) Superlattices
278(1)
Asymmetrical GaAs/GaAlAs (100) Double Quantum Wells
278(5)
Effects of X Parallel to [ 001] on Bulk GaAs and GaAs/GaAlAs Single Quantum Wells Grown on (100) Si Substrates
283(5)
Symmetry of Conduction States of GaAs/AlAs Type II (001) Superlattices
288(2)
Determination of the Band Alignment in Si1-x Gex/Si (100) Quantum Wells
290(5)
Summary
295(1)
Acknowledgments
296(5)
References
296(5)
Semiconductor Optoelectronic Devices
A. R. Adams
M. Silver
J. Allam
Introduction
301(1)
Experimental Considerations
302(3)
Semiconductor Lasers
305(21)
Basic Laser Concepts
305(3)
Laser Characteristics: Their Pressure and Temperature Dependence
308(18)
Uniaxial Strain Effects: Strained-Layer Lasers
326(1)
Hydrostatic Pressure Measurements of Avalanche Photodiodes: The Band-Structure Dependence of Impact Ionization
327(21)
Introduction
327(2)
Physics of Impact Ionization in Semiconductors
329(3)
Pressure Results
332(12)
``Universal'' Dependence of Avalanche Breakdown on Band Structure
344(3)
Conclusions
347(1)
Summary
348(6)
Acknowledgments
349(1)
References
349(5)
The Application of High Nitrogen Pressure in the Physics and Technology of III--N Compounds
S. Porowski
I. Grzegory
Introduction
354(1)
Thermal Stability of AIN, GaN, and InN
355(2)
Solubility of N in Liquid Al, Ga, and In
357(2)
Kinetic Limitations of Dissolution of Nitrogen in Liquid Al, Ga, and In
359(3)
High N2 Pressure Solution Growth of GaN
362(3)
Experimental
362(1)
Crystals
363(2)
Physical Properties of Pressure-Grown GaN Crystals
365(5)
Wet Etching and Surface Preparation
370(4)
Homoepitaxy
374(3)
Conclusions
377(5)
Acknowledgments
378(1)
References
378(4)
Diamond Anvil Cells in High Pressure Studies of Semiconductors
Mohammad Yousuf
DAC: An Apparatus Par Excellence to Achieve Highest Static Pressure
382(32)
Diamond as an Anvil Material
382(14)
Precision Fabrication of a Typical DAC
396(4)
Principle of the Alignment of Diamond Anvils
400(4)
Gasketing: A Turning Point in DAC Use
404(1)
Preparation of the Sample in a Typical DAC Experiment
405(1)
Pressure Scale and Pressure Calibration
406(3)
Pressure-Transmitting Medium and the Limit of Hydrostaticity
409(2)
Pressure Combined with Other Thermodynamic Fields
411(3)
Condensed Matter Physics Techniques Coupled to a DAC
414(10)
Optical Spectroscopy
415(5)
X-Ray Diffraction
420(4)
Transport Properties
424(1)
High Pressure Studies of Semiconductors
424(5)
Conventional Semiconductors
425(2)
Strongly Correlated Semiconductor Systems
427(2)
Concluding Remarks
429(8)
Acknowledgments
430(1)
References
431(6)
Index 437(8)
Contents of Volumes in This Series 445


Prof. Dr. Eicke R. Weber, Fraunhofer-Institut fur Solare Energiesysteme ISE, Freiburg, Germany