Atnaujinkite slapukų nuostatas

Higher Order Partial Differential Equations in Clifford Analysis: Effective Solutions to Problems Softcover reprint of the original 1st ed. 2003 [Minkštas viršelis]

  • Formatas: Paperback / softback, 178 pages, aukštis x plotis: 235x155 mm, weight: 302 g, IX, 178 p., 1 Paperback / softback
  • Serija: Progress in Mathematical Physics 28
  • Išleidimo metai: 24-Oct-2012
  • Leidėjas: Springer-Verlag New York Inc.
  • ISBN-10: 1461265738
  • ISBN-13: 9781461265733
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 178 pages, aukštis x plotis: 235x155 mm, weight: 302 g, IX, 178 p., 1 Paperback / softback
  • Serija: Progress in Mathematical Physics 28
  • Išleidimo metai: 24-Oct-2012
  • Leidėjas: Springer-Verlag New York Inc.
  • ISBN-10: 1461265738
  • ISBN-13: 9781461265733
Kitos knygos pagal šią temą:
The most important thing is to write equations in a beautiful form and their success in applications is ensured. Paul Dirac The uniqueness and existence theorems for the solutions of boundary and initial value problems for systems of high-order partial differential equations (PDE) are sufficiently well known. In this book, the problems considered are those whose solutions can be represented in quadratures, i.e., in an effective form. Such problems have remarkable applications in mathematical physics, the mechanics of deformable bodies, electro­ magnetism, relativistic quantum mechanics, and some of their natural generalizations. Almost all such problems can be set in the context of Clifford analysis. Moreover, they can be obtained without applying any physical laws, a circumstance that gives rise to the idea that Clifford analysis itself can suggest generalizations of classical equations or new equations altogether that may have some physical content. For that reason, Clifford analysis represents one of the most remarkable fields in modem mathematics as well as in modem physics.

Daugiau informacijos

Springer Book Archives
I Boundary Value Problems for Regular, Generalized Regular and
Pluriregular Elliptic Equations.- I Two-Dimensional Cases.- II
Multidimensional Cases.- II Initial Value Problems for Regular and
Pluriregular, Hyperbolic and Parabolic Equations.- III Hyperbolic and
Plurihyperbolic Equations in Clifford Analysis.- IV Parabolic and
Pluriparabolic Equations in Clifford Analysis.- Epilogue.- References.