Atnaujinkite slapukų nuostatas

El. knyga: Hilbert Space Problem Book

4.43/5 (15 ratings by Goodreads)
  • Formatas: PDF+DRM
  • Serija: Graduate Texts in Mathematics 19
  • Išleidimo metai: 06-Dec-2012
  • Leidėjas: Springer-Verlag New York Inc.
  • Kalba: eng
  • ISBN-13: 9781468493306
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Serija: Graduate Texts in Mathematics 19
  • Išleidimo metai: 06-Dec-2012
  • Leidėjas: Springer-Verlag New York Inc.
  • Kalba: eng
  • ISBN-13: 9781468493306
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

From the Preface: "This book was written for the active reader. The first part consists of problems, frequently preceded by definitions and motivation, and sometimes followed by corollaries and historical remarks... The second part, a very short one, consists of hints... The third part, the longest, consists of solutions: proofs, answers, or contructions, depending on the nature of the problem....

This is not an introduction to Hilbert space theory. Some knowledge of that subject is a prerequisite: at the very least, a study of the elements of Hilbert space theory should proceed concurrently with the reading of this book."



Written for the active reader with some background in the topic, this book presents problems in Hilbert space theory, with definitions, corollaries and historical remarks, hints, proofs, answers and constructions.

Daugiau informacijos

Springer Book Archives
1. Vectors.-
1. Limits of quadratic forms.-
2. Schwarz inequality.-
3.
Representation of linear functional.-
4. Strict convexity.-
5. Continuous
curves.-
6. Uniqueness of crinkled arcs.-
7. Linear dimension.-
8. Total
sets.-
9. Infinitely total sets.-
10. Infinite Vandermondes.-
11.
T-totalsets.-
12. Approximate bases.-
2. Spaces.-
13. Vector sums.-
14.
Lattice of subspaces.-
15. Vector sums and the modular law.-
16. Local
compactness and dimension.-
17. Separability and dimension.-
18. Measure in
Hilbert space.-
3. Weak Topology.-
19. Weak closure of subspaces.-
20. Weak
continuity of norm and inner product.-
21. Semicontinuity of norm.-
22. Weak
separability.-
23. Weak compactness of the unit ball.-
24. Weak metrizability
of the unit ball.-
25. Weak closure of the unit sphere.-
26. Weak
metrizability and separability.-
27. Uniform boundedness.-
28. Weak
metrizability of Hilbert space.-
29. Linear functionals on l2.-
30. Weak
completeness.-
4. Analytic Functions.-
31. Analytic Hilbert spaces.-
32.
Basis for A2.-
33. Real functions in H2.-
34. Products in H2.-
35. Analytic
characterization of H2.-
36. Functional Hilbert spaces.-
37. Kernel
functions.-
38. Conjugation in functional Hilbert spaces.-
39. Continuity of
extension.-
40. Radial limits.-
41. Bounded approximation.-
42.
Multiplicativity of extension.-
43. Dirichlet problem.-
5. Infinite
Matrices.-
44. Column-finite matrices.-
45. Schur test.-
46. Hilbert matrix.-
47. Exponential Hilbert matrix.-
48. Positivity of the Hilbert matrix.-
49.
Series of vectors.-
6. Boundedness and Invertibility.-
50. Boundedness on
bases.-
51. Uniform boundedness of linear transformations.-
52. Invertible
transformations.-
53. Diminishablc complements.-
54. Dimension in
inner-product spaces.-
55. Total orthonormal sets.-
56. Preservation of
dimension.-
57. Projections of equal rank.-
58. Closed graph theorem.-
59.
Range inclusion and factorization.-
60. Unbounded symmetric transformations.-
7. Multiplication Operators.-
61. Diagonal operators.-
62. Multiplications on
l2.-
63. Spectrum of a diagonal operator.-
64. Norm of a multiplication.-
65.
Boundedness of multipliers.-
66. Boundedness of multiplications.-
67.
Spectrum of a multiplication.-
68. Multiplications on functional Hilbert
spaces.-
69. Multipliers of functional Hilbert spaces.-
8. Operator
Matrices.-
70. Commutative operator determinants.-
71. Operator
determinants.-
72. Operator determinants with a finite entry.-
9. Properties
of Spectra.-
73. Spectra and conjugation.-
74. Spectral mapping theorem.-
75.
Similarity and spectrum.-
76. Spectrum of a product.-
77. Closure of
approximate point spectrum.-
78. Boundary of spectrum.-
10. Examples of
Spectra.-
79. Residual spectrum of a normal operator.-
80. Spectral parts of
a diagonal operator.-
81. Spectral parts of a multiplication.-
82. Unilateral
shift.-
83. Structure of the set of eigenvectors.-
84. Bilateral shift.-
85.
Spectrum of a functional multiplication.-
11. Spectral Radius.-
86.
Analyticity of resolvents.-
87. Non-emptiness of spectra.-
88. Spectral
radius.-
89. Weighted shifts.-
90. Similarity of weighted shifts.-
91. Norm
and spectral radius of a weighted shift.-
92. Power norms.-
93. Eigenvalues
of weighted shifts.-
94. Approximate point spectrum of a weighted shift.-
95.
Weighted sequence spaces.-
96. One-point spectrum.-
97. Analytic
quasinilpotents.-
98. Spectrum of a direct sum.-
12. Norm Topology.-
99.
Metric space of operators.-
100. Continuity of inversion.-
101. Interior of
conjugate class.-
102. Continuity of spectrum.-
103. Semicontinuity of
spectrum.-
104. Continuity of spectral radius.-
105. Normal continuity of
spectrum.-
106. Quasinilpotent perturbations of spectra.-
13. Operator
Topologies.-
107. Topologies for operators.-
108. Continuity of norm.-
109.
Semicontinuity of operator norm.-
110. Continuity of adjoint.-
111.
Continuity of multiplication.-
112. Separate continuity of multiplication.-
113. Sequential continuity of multiplication.-
114. Weak sequential
continuity of squaring.-
115. Weak convergence of projections.-
14. Strong
Operator Topology.-
116. Strong normal continuity of adjoint.-
117. Strong
bounded continuity of multiplication.-
118. Strong operator versus weak
vector convergence.-
119. Strong semicontinuity of spectrum.-
120. Increasing
sequences of Hermitian operators.-
121. Square roots.-
122. Infimum of two
projections.-
15. Partial Isometries.-
123. Spectral mapping theorem for
normal operators.-
124. Decreasing squares.-
125. Polynomially diagonal
operators.-
126. Continuity of the functional calculus.-
127. Partial
isometries.-
128. Maximal partial isometries.-
129. Closure and connectedness
of partial isometries.-
130. Rank, co-rank, and nullity.-
131. Components of
the space of partial isometries.-
132. Unitary equivalence for partial
isometries.-
133. Spectrum of a partial isometry.-
16. Polar Decomposition.-
134. Polar decomposition.-
135. Maximal polar representation.-
136. Extreme
points.-
137. Quasinormal operators.-
138. Mixed Schwarz inequality.-
139.
Quasinormal weighted shifts.-
140. Density of invertible operators.-
141.
Connectedness of invertible operators.-
17. Unilateral Shift.-
142. Reducing
subspaces of normal operators.-
143. Products of symmetries.-
144. Unilateral
shift versus normal operators.-
145. Square root of shift.-
146. Commutant of
the bilateral shift.-
147. Commutant of the unilateral shift.-
148. Commutant
of the unilateral shift as limit.-
149. Characterization of isometries.-
150.
Distance from shift to unitary operators.-
151. Square roots of shifts.-
152.
Shifts as universal operators.-
153. Similarity to parts of shifts.-
154.
Similarity to contractions.-
155. Wandering subspaces.-
156. Special
invariant subspaces of the shift.-
157. Invariant subspaces of the shift.-
158. F. and M. Riesz theorem.-
159. Reducible weighted shifts.-
18. Cyclic
Vectors.-
160. Cyclic vectors.-
161. Density of cyclic operators.-
162.
Density of non-cyclic operators.-
163. Cyclicity of a direct sum.-
164.
Cyclic vectors of adjoints.-
165. Cyclic vectors of a position operator.-
166. Totality of cyclic vectors.-
167. Cyclic operators and matrices.-
168.
Dense orbits.-
19. Properties of Compactness.-
169. Mixed continuity.-
170.
Compact operators.-
171. Diagonal compact operators.-
172. Normal compact
operators.-
173. Hilbert-Schmidt operators.-
174. Compact versus
Hilbert-Schmidt.-
175. Limits of operators of finite rank.-
176. Ideals of
operators.-
177. Compactness on bases.-
178. Square root of a compact
operator.-
179. Fredholm alternative.-
180. Range of a compact operator.-
181. Atkinsons theorem.-
182. Weyls theorem.-
183. Perturbed spectrum.-
184. Shift modulo compact operators.-
185. Distance from shift to compact
operators.-
20. Examples of Compactness.-
186. Bounded Volterra kernels.-
187. Unbounded Volterra kernels.-
188. Volterra integration operator.-
189.
Skew-symmetric Volterra operator.-
190. Norm 1, spectrum {1}.-
191. Donoghue
lattice.-
21. Subnormal Operators.-
192. Putnam-Fuglede theorem.-
193.
Algebras of normal operators.-
194. Spectral measure of the unit disc.-
195.
Subnormal operators.-
196. Quasinormal invariants.-
197. Minimal normal
extensions.-
198. Polynomials in the shift.-
199. Similarity of subnormal
operators.-
200. Spectral inclusion theorem.-
201. Filling in holes.-
202.
Extensions of finite co-dimension.-
203. Hyponormal operators.-
204. Normal
and subnormal partial isometries.-
205. Norm powers and power norms.-
206.
Compact hyponormal operators.-
207. Hyponormal, compact imaginary part.-
208.
Hyponormal idempotents.-
209. Powers of hyponormal operators.-
22. Numerical
Range.-
210. Toeplitz-Hausdorff theorem.-
211. Higher-dimensional numerical
range.-
212. Closure of numerical range.-
213. Numerical range of a compact
operator.-
214. Spectrum and numerical range.-
215. Quasinilpotence and
numerical range.-
216. Normality and numerical range.-
217. Subnormality and
numerical range.-
218. Numerical radius.-
219. Normaloid, convexoid, and
spectraloid operators.-
220. Continuity of numerical range.-
221. Power
inequality.-
23. Unitary Dilations.-
222. Unitary dilations.-
223. Images of
subspaces.-
224. Weak closures and dilations.-
225. Strong closures and
extensions.-
226. Strong limits of hyponormal operators.-
227. Unitary power
dilations.-
228. Ergodic theorem.-
229. von Neumanns inequality.-
24.
Commutators.-
230. Commutators.-
231. Limits of commutators.-
232.
Kleinecke-Shirokov theorem.-
233. Distance from a commutator to the
identity.-
234. Operators with large kernels.-
235. Direct sums as
commutators.-
236. Positive self-commutators.-
237. Projections as
self-commutators.-
238. Multiplicative commutators.-
239. Unitary
multiplicative commutators.-
240. Commutator subgroup.-
25. Toeplitz
Operators.-
241. Laurent operators and matrices.-
242. Toeplitz operators and
matrices.-
243. Toeplitz products.-
244. Compact Toeplitz products.-
245.
Spectral inclusion theorem for Toeplitz operators.-
246. Continuous Toeplitz
products.-
247. Analytic Toeplitz operators.-
248. Eigenvalues of Hermitian
Toeplitz operators.-
249. Zero-divisors.-
250. Spectrum of a Hermitian
Toeplitz operator.- References.- List of Symbols.