Atnaujinkite slapukų nuostatas

Holographic Entanglement Entropy 1st ed. 2017 [Minkštas viršelis]

4.40/5 (10 ratings by Goodreads)
  • Formatas: Paperback / softback, 246 pages, aukštis x plotis: 235x155 mm, weight: 3927 g, 66 Illustrations, color; 67 Illustrations, black and white; IX, 246 p. 133 illus., 66 illus. in color., 1 Paperback / softback
  • Serija: Lecture Notes in Physics 931
  • Išleidimo metai: 09-May-2017
  • Leidėjas: Springer International Publishing AG
  • ISBN-10: 3319525719
  • ISBN-13: 9783319525716
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 246 pages, aukštis x plotis: 235x155 mm, weight: 3927 g, 66 Illustrations, color; 67 Illustrations, black and white; IX, 246 p. 133 illus., 66 illus. in color., 1 Paperback / softback
  • Serija: Lecture Notes in Physics 931
  • Išleidimo metai: 09-May-2017
  • Leidėjas: Springer International Publishing AG
  • ISBN-10: 3319525719
  • ISBN-13: 9783319525716
Kitos knygos pagal šią temą:
This book provides a comprehensive overview of developments in the field of holographic entanglement entropy. Within the context of the AdS/CFT correspondence, it is shown how quantum entanglement is computed by the area of certain extremal surfaces. The general lessons one can learn from this connection are drawn out for quantum field theories, many-body physics, and quantum gravity. An overview of the necessary background material is provided together with a flavor of the exciting open questions that are currently being discussed.  The book is divided into four main parts. In the first part, the concept of entanglement, and methods for computing it, in quantum field theories is reviewed. In the second part, an overview of the AdS/CFT correspondence is given and the holographic entanglement entropy prescription is explained. In the third part, the time-dependence of entanglement entropy in out-of-equilibrium systems, and applications to many body physics are explored using holog

raphic methods. The last part focuses on the connection between entanglement and geometry. Known constraints on the holographic map, as well as, elaboration of entanglement being a fundamental building block of geometry are explained.  The book is a useful resource for researchers and graduate students interested in string theory and holography, condensed matter and quantum information, as it tries to connect these different subjects linked by the common theme of quantum entanglement. 

Acknowledgments.- Introduction.- I Quantum Entanglement.- Entanglement in QFT.- Entanglement entropy in CFT2.- Single interval in CFT2.- II Holography and entanglement.- Holographic entanglement entropy.-Deriving holographic entanglement proposals.- Properties of holographic entanglement entropy.- III Entanglement and quantum dynamics.- Quantum quenches and entanglement.- Entanglement in excited states.- Holographic many body systems.- Entanglement and renormalization.- IV Quantum Gravity.- Prelude: Entanglement builds Geometry.- Entanglement at large central charge.- Geometry from entanglement.- AdS/CFT and tensor networks.
1 Introduction
1(6)
Part I Quantum Entanglement
2 Entanglement in QFT
7(20)
2.1 Entanglement in Lattice Systems
7(4)
2.2 Continuum QFTs
11(3)
2.3 Path Integrals and Replica
14(7)
2.4 General Properties of Entanglement Entropy
21(3)
2.4.1 UV and IR Properties
21(2)
2.4.2 Entropy Inequalities
23(1)
2.5 Relative Entropy
24(3)
3 Entanglement Entropy in CFT2
27(8)
3.1 A Single-Interval in CFT2
28(3)
3.2 Disconnected Regions, Multiple Intervals
31(4)
Part II Holography and Entanglement
4 Holographic Entanglement Entropy
35(14)
4.1 A Lightning Introduction to Holography
35(2)
4.2 The Gravitational Setup
37(6)
4.3 The Holographic Entanglement Entropy
43(6)
5 Deriving Holographic Entanglement Proposals
49(16)
5.1 Deriving the RT Proposal
50(7)
5.1.1 Kinematics
52(2)
5.1.2 Dynamics
54(1)
5.1.3 The On-Shell Action
55(2)
5.2 Deriving the HRT Prescription
57(4)
5.3 Higher Derivative Gravity
61(1)
5.4 Implications of the Bulk Replica Construction
62(3)
6 Properties of Holographic Entanglement Entropy
65(34)
6.1 An Extremal Surface Primer
65(21)
6.1.1 Near-Boundary Geometry and Energy-Momentum Tensor
66(2)
6.1.2 Extremal Surface Determination
68(18)
6.2 Holographic UV and IR Properties
86(2)
6.3 Holographic Entropy Inequalities
88(11)
Part III Entanglement and Quantum Dynamics
7 Quantum Quenches and Entanglement
99(26)
7.1 Global Quantum Quenches in CFTs
100(1)
7.2 Boundary States in CFT2
101(3)
7.3 Time Evolution of Entanglement Entropy
104(3)
7.4 Eternal Black Holes and Quantum Entanglement
107(4)
7.5 Holographic Quantum Quenches
111(14)
7.5.1 Vaidya-AdS and Global Quench
112(2)
7.5.2 Holographic Boundary States
114(6)
7.5.3 Entanglement Tsunami
120(5)
8 Entanglement in Excited States
125(20)
8.1 First Law of Entanglement Entropy
125(4)
8.1.1 A Holographic First Law
125(3)
8.1.2 Relative Entropy and the Entanglement First Law
128(1)
8.2 Entanglement Dynamics in Locally Excited States
129(3)
8.3 A Free Field Computation
132(3)
8.4 Local Excitations in Holography
135(10)
8.4.1 Massive Particle Excitation
135(5)
8.4.2 Operator Deformations
140(5)
9 Holographic Many-Body Systems
145(10)
9.1 Fermi Surfaces and Entanglement
146(3)
9.2 Fermi Surfaces in Holography
149(4)
9.3 Gravity Duals of Hyperscaling Violation
153(2)
10 Entanglement and Renormalization
155(12)
10.1 Central Charges and the Renormalization Group
156(2)
10.2 Entropic c-Functions
158(9)
10.2.1 The c-Theorem in d = 2
158(3)
10.2.2 The F-Theorem in d = 3
161(3)
10.2.3 d > 3 Dimensions
164(3)
Part IV Quantum Gravity
11 Prelude: Entanglement Builds Geometry
167(4)
12 Entanglement at Large Central Charge
171(14)
12.1 Universality Features of CFT Entanglement
172(2)
12.2 CFT2 at Large c
174(11)
12.2.1 Entanglement Phase Transitions
177(2)
12.2.2 Excited State Entanglement
179(2)
12.2.3 Local Quenches
181(4)
13 Geometry from Entanglement
185(36)
13.1 Criteria for Geometric Duals
187(7)
13.1.1 Sufficient Criteria for QFTs to Have a Semiclassical Gravitational Dual
188(1)
13.1.2 Field Theory Constraints on Geometry
189(4)
13.1.3 Constraints on Field Theory States to Admit Geometric Dual
193(1)
13.2 The Dual of a Density Matrix
194(12)
13.2.1 Local Bulk Operators in Holography
194(7)
13.2.2 Subregion-Subregion Duality
201(5)
13.3 Holography and Quantum Error Correction
206(4)
13.4 Entanglement and Gravity
210(11)
13.4.1 Linearized Gravity from Entanglement
212(2)
13.4.2 The First Law of Black Hole Mechanics
214(4)
13.4.3 Canonical Energy and Relative Entropy
218(1)
13.4.4 Relative Entropy Constraints
219(2)
14 AdS/CFT and Tensor Networks
221(14)
14.1 Tensor Networks
221(3)
14.2 MERA
224(2)
14.3 AdS/CFT and Tensor Networks
226(2)
14.4 Continuous MERA
228(7)
14.4.1 cMERA for Free Scalar Fields
230(2)
14.4.2 cMERA for Excited States in Free Scalar Field Theories
232(3)
References 235