Atnaujinkite slapukų nuostatas

El. knyga: Holographic Staring Radar

, (University of Birmingham, UK)
  • Formatas: PDF+DRM
  • Serija: Radar, Sonar and Navigation
  • Išleidimo metai: 17-Dec-2021
  • Leidėjas: Institution of Engineering and Technology
  • Kalba: eng
  • ISBN-13: 9781785613906
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Serija: Radar, Sonar and Navigation
  • Išleidimo metai: 17-Dec-2021
  • Leidėjas: Institution of Engineering and Technology
  • Kalba: eng
  • ISBN-13: 9781785613906
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The development of radar has been one of the most successful direct applications of physics ever attempted, and then implemented and applied at large scale. Certain watchwords of radar engineering have underpinned many of the developments of the past 80 years and remain potential avenues for improvement. For example, 'Narrow beams are good', 'Fast detection is good', 'Agility is good', and 'Clutter is bad'. All these statements of merit are true. The underlying principles for all these statements are the laws of physics, and they provide support for current radar designs. However, each of these statements is really a design choice, rather than their necessary consequence.



This book shows that under the physical laws and with modern data processing, staring radar offers a new direction of travel. The process of detection and tracking can be updated through persistent signal discovery and target analysis, without losses in sensitivity, and while delivering detailed information on target dynamics and classification.



The first part of the book introduces various forms of staring radar, which include the earliest and simplest forms of electromagnetic surveillance and its users. The next step is to summarise the physical laws under which all radar operates, and the requirements that these systems need or will need to meet to fulfil a range of applications. We are then able to be specific about the technology needed to implement staring radar.
About the authors xi
Foreword: Directions of travel for radar air surveillance xiii
1 Introduction to holographic staring radar 1(18)
1.1 Early history
2(1)
1.2 Distinct forms of radar
2(1)
1.3 Physical constraints and complexities
3(1)
1.4 What is radar for, how has it developed and what is its potential?
4(4)
1.4.1 Antecedents for a surveillance radar approach
5(1)
1.4.2 The sequential-scanning radar approach
6(1)
1.4.3 Staring by comparison
6(2)
1.5 Historical background
8(8)
References
16(3)
2 Users and uses of surveillance radar 19(14)
2.1 Requirements for surveillance
19(2)
2.2 Air surveillance
21(7)
2.3 Ground surveillance
28(3)
2.4 The range of uses of HSR
31(1)
References
32(1)
3 Physics of holographic staring radar 33(36)
3.1 Targets and information
33(6)
3.1.1 Physics and signal-encoded information
33(1)
3.1.2 Detection with a scanning beam
34(1)
3.1.3 Holographic staring radar and analytic solutions
35(1)
3.1.4 Extending time on target
36(1)
3.1.5 Modelling a scattering target
37(2)
3.2 Physics fundamentals
39(7)
3.2.1 Maxwell's equations
39(3)
3.2.2 The electromagnetic uniqueness theorem
42(2)
3.2.3 Huygens' principle
44(1)
3.2.4 The reciprocity theorem
45(1)
3.2.5 The speed of light as a constraint
45(1)
3.3 The staring radar power budget
46(6)
3.3.1 Signal power, noise, aperture, resolution, dynamic range and accuracy
46(1)
3.3.2 Sampling space and time
47(1)
3.3.3 Ambiguities in range and Doppler
48(1)
3.3.4 Sensitivity under range walk
49(1)
3.3.5 Coherence and decoherence
50(1)
3.3.6 Photons, airspace and memory
51(1)
3.4 Multipath propagation and the EUNIT
52(1)
3.5 Mechanical and geometric effects
53(1)
3.6 Beams and sidelobes
54(2)
3.7 Targets, the propagation medium and histories
56(1)
3.8 Target and clutter types, features and models
57(2)
3.9 The volume of regard and radar networks
59(1)
3.10 Atmospheric losses and precipitation
59(1)
3.11 Analytic solutions for targets and clutter
60(5)
3.11.1 Doppler effect with target dynamics
61(2)
3.11.2 Target modulating features
63(1)
3.11.3 Resolution cell analysis for large VoRs
64(1)
3.12 Spectrum selection and occupancy
65(2)
3.13 Conclusions on staring radar physics
67(1)
References
68(1)
4 Applications of holographic staring radar 69(20)
4.1 Airspace challenges
70(8)
4.1.1 Wind farm mitigation
71(3)
4.1.2 Unmanned air vehicles (UAVs/Drones)
74(2)
4.1.3 Air surveillance integration
76(2)
4.2 Imaging complex targets
78(1)
4.3 HF Radar
79(3)
4.3.1 Over the horizon radar
79(2)
4.3.2 HF Radar for ocean monitoring
81(1)
4.4 Radar for autonomous vehicles
82(3)
4.5 Passive radar
85(3)
4.6 Other applications
88(1)
References
88(1)
5 Configurations for HSR 89(30)
5.1 HSR configuration examples
89(6)
5.1.1 Common features of staring radar
90(3)
5.1.2 Proof of concept HSR
93(2)
5.1.3 Short range configuration (SRC) outline
95(1)
5.1.4 Air traffic configuration (ATC) outline
95(1)
5.2 SRC outline resources, structure and functions
95(8)
5.2.1 SRC physical configuration
96(1)
5.2.2 SRC transmission
97(1)
5.2.3 SRC receiver channels and range cells
98(1)
5.2.4 SRC Azimuth and elevation beamforming and RAED data access
99(1)
5.2.5 SRC Doppler transformation
100(1)
5.2.6 SRC airspace partitioning
100(1)
5.2.7 SRC operation and processing
100(1)
5.2.8 SRC summary
101(2)
5.3 ATC resources, structure and functions
103(14)
5.3.1 ATC physical configuration
103(4)
5.3.2 ATC transmission
107(4)
5.3.3 ATC receiver channels, range cells and data communications
111(1)
5.3.4 ATC beamforming
111(3)
5.3.5 ATC Doppler and downstream processing
114(1)
5.3.6 ATC airspace partitioning
115(1)
5.3.7 ATC operation and processing
115(1)
5.3.8 Coherent staring radar networks
115(2)
5.4 Modular structure for surveillance HSRs
117(1)
5.5 Surveillance information
117(2)
6 Cell discovery and HSR signal metrics 119(46)
6.1 Channel, array and system status
121(1)
6.1.1 Calibration requirements
121(1)
6.1.2 Noise and interference
122(1)
6.2 Target detection against noise and clutter
122(10)
6.2.1 Inherent noise in radar receivers
123(2)
6.2.2 Detection and thresholds
125(1)
6.2.3 CFAR thresholds
126(2)
6.2.4 Historical threshold setting
128(1)
6.2.5 VH data format
128(4)
6.3 Cell discovery and analysis
132(11)
6.3.1 Raw data throughput
134(1)
6.3.2 Signal acquisition
134(1)
6.3.3 Clutter and its suppression
134(5)
6.3.4 Target discrimination
139(1)
6.3.5 Channel and system malfunctions
140(3)
6.3.6 Cell classifications
143(1)
6.4 Measurement of interference
143(14)
6.4.1 Radio interference (NXS) - scalar histograms
144(2)
6.4.2 Radio interference using VH format
146(2)
6.4.3 Radar interference (NXS) - scalar histograms
148(2)
6.4.4 Radar interference using VH format
150(1)
6.4.5 Wind turbine interference (NRD)
150(6)
6.4.6 Intentional interference
156(1)
6.5 Target capture for staring radar
157(6)
6.5.1 Nominal conditions (noise, clutter and target features)
157(1)
6.5.2 Surface multipath conditions
158(1)
6.5.3 Target capture with dynamics
158(1)
6.5.4 Target signatures and micromotion
159(2)
6.5.5 Target tracking
161(2)
6.6 Conclusions on cell discovery and target capture
163(2)
7 Vulnerabilities and resilience 165(34)
7.1 Transmission
165(1)
7.1.1 Reduced gain on transmission
165(1)
7.1.2 Recovery of sensitivity
166(1)
7.2 Decoherence during the CPI
166(4)
7.2.1 Doppler ambiguities
166(2)
7.2.2 Target dynamics
168(1)
7.2.3 Motion disturbances
169(1)
7.2.4 The effects of phase noise
169(1)
7.3 Multipath propagation
170(10)
7.3.1 Surface multipath propagation for HSR
170(2)
7.3.2 HSR elevation measurement with surface multipath
172(3)
7.3.3 Azimuth multipath for HSR
175(4)
7.3.4 Exploitation of azimuth multipath
179(1)
7.4 Target walk
180(7)
7.4.1 Doppler Walk recovery for ATC
181(2)
7.4.2 Range Walk for ATC
183(2)
7.4.3 Range ambiguities
185(1)
7.4.4 Azimuth walk
186(1)
7.4.5 Summary of adverse target conditions
186(1)
7.5 Resilience under interference
187(6)
7.5.1 Channel saturation
188(1)
7.5.2 Noise degradation and suppression of radio interference
189(2)
7.5.3 Suppression in the presence of multipath
191(2)
7.6 Processing burden
193(2)
7.7 The balance of HSR vulnerability and resilience
195(2)
References
197(2)
8 Coherent target histories 199(38)
8.1 Cell status and classes of information
199(8)
8.1.1 Concatenation of CPIs
200(1)
8.1.2 Concatenated cell processing
201(1)
8.1.3 Aerial manoeuvring
201(6)
8.2 The VoR environment (NSC)
207(9)
8.2.1 Road and rail traffic
207(4)
8.2.2 Sea clutter
211(1)
8.2.3 Weather features
212(1)
8.2.4 Birds
212(3)
8.2.5 Interrelation of cells
215(1)
8.3 Target analysis, history and recovery (CST)
216(3)
8.3.1 Target detail
216(1)
8.3.2 Target fading
217(1)
8.3.3 Target imaging
218(1)
8.3.4 Extended target behaviour
218(1)
8.3.5 Target recovery
219(1)
8.4 Repetitive clutter analysis: wind turbines (NRD, RDT)
219(9)
8.4.1 Wind Turbine Generators
220(5)
8.4.2 Time domain suppression
225(1)
8.4.3 Frequency domain suppression
226(1)
8.4.4 Turbine shadowing and ghosting
227(1)
8.5 Longer-term retrospective surveillance
228(7)
8.5.1 Clutter imaging (NCD)
229(1)
8.5.2 Multipath fading
229(1)
8.5.3 Target accounting (CST, CDT, RDT)
229(3)
8.5.4 Aircraft classification
232(3)
8.6 Conclusions on CPI concatenation and target histories
235(2)
9 Multilook mapping and multipath suppression 237(38)
9.1 Sources and effects of multipath
237(6)
9.1.1 Interfering surface multipath
239(1)
9.1.2 Shadowing and absorption by buildings
239(1)
9.1.3 Non-interfering azimuth multipath (NIMP)
240(3)
9.2 NIMP scattering and measurement
243(2)
9.2.1 Secondary satellites
243(1)
9.2.2 Tertiary satellites
243(1)
9.2.3 Measured positions, Doppler and time
244(1)
9.2.4 The RAED data structure in satellite suppression
244(1)
9.2.5 Scatter source information
244(1)
9.3 Reflection and scattering geometries and satellite ranges
245(8)
9.3.1 Sensitivity, range and Doppler for satellite propagation
246(2)
9.3.2 Modelling satellite propagation
248(5)
9.3.3 Summary of satellite returns
253(1)
9.4 Scatter analysis and treatment
253(14)
9.4.1 Satellite identification
254(1)
9.4.2 Satellite exclusion and report clarification
254(1)
9.4.3 Scatter source inference from multipath satellites
254(2)
9.4.4 Scatter source position
256(11)
9.5 Clutter-congested airspace
267(5)
9.5.1 Satellite discrimination and assignment
267(4)
9.5.2 Target assignment and the computing burden
271(1)
9.6 Solution maintenance
272(1)
9.7 Interfering multipath
272(2)
9.7.1 Transmit surface interference
273(1)
9.7.2 Reception surface interference
273(1)
9.7.3 Interfering azimuth multipath (IAMP)
273(1)
9.8 Conclusions on multipath scatter suppression and exploitation
274(1)
10 Spectrum efficiency and HSR networks 275(30)
10.1 Spectrum requirements
276(5)
10.1.1 Factors influencing the irradiation requirement
277(1)
10.1.2 Spectrum occupancy versus time resolution
278(1)
10.1.3 Passive radar
279(1)
10.1.4 Sharing with other services
280(1)
10.1.5 Common-spectrum surveillance
280(1)
10.2 Mutual interference
281(6)
10.2.1 Common frequency in a BSR network
281(1)
10.2.2 Coherent, synchronous, persistent transmissions for NHR
282(5)
10.2.3 Mutual interference - conclusion
287(1)
10.3 NHR operation, transmitter ID and target measurements
287(12)
10.3.1 NHR0 station siting
287(1)
10.3.2 NHR0 geometry
287(1)
10.3.3 Target capture
288(7)
10.3.4 Cell pair interpretation
295(4)
10.4 NHR network constraints and resilience
299(4)
10.4.1 Symmetries
299(1)
10.4.2 Receiver saturation
299(1)
10.4.3 Radio interference
300(1)
10.4.4 Timing control
300(1)
10.4.5 Control within the CPI
300(2)
10.4.6 Coincident and synchronised transmission and reception
302(1)
10.5 Coherent radar networks - conclusions
303(2)
11 Holographic staring radar - to summarise 305(4)
Appendix 1: Measurement of dynamics in aerial manoeuvres 309(16)
Figure A.1 Flight profile 'I': Trajectory plots; Doppler spectra; VHFDs; Dynamics traces
311(2)
Figure A.2 Flight profiles A - J; Trajectory plots
313(1)
Figure A.3 Flight profiles A - J; Doppler spectra
314(1)
Figure A.4 Flight profiles A - J; VHFDs
315(1)
Figure A.5 Flight profiles A - J; Dynamics traces
316(1)
Figure A.6 Flight profiles K - T; Trajectory plots
317(1)
Figure A.7 Flight profiles K - T; Doppler spectra
318(1)
Figure A.8 Flight profiles K - T; VHFDs
319(1)
Figure A.9 Flight profiles K - T; Dynamics traces
320(1)
Figure A.10 Flight profiles U-AD; Trajectory plots
321(1)
Figure A.11 Flight profiles U-AD; Doppler spectra
322(1)
Figure A.12 Flight profiles U-AD; VHFDs
323(1)
Figure A.13 Flight profiles U-AD; Dynamics traces
324(1)
Index 325
Gordon Oswald was the chief science officer of Aveillant Ltd, UK. He studied physics at Oxford, then radioglaciology at Cambridge, applying radar in Arctic and Antarctic geophysics. He joined Cambridge Consultants (Arctic remote sensing; European and US anti-air weapons evaluation; automotive collision avoidance); founded Aveillant (aviation and wind turbine reconciliation; UAV threat classification). He has served as a research professor at the University of Maine, chairman of the British Association of Remote Sensing Companies, and organising secretary of the Cambridge Society for the Application of Research.



Chris Baker holds the chair in Intelligent sensors systems at the University of Birmingham and prior to this was the chief technology officer of Aveillant Ltd., UK. He has also held positions at The Ohio State University, Australian National University (ANU), University College London and UK government research laboratories. He is the author of over three hundred publications, including Stimson's Introduction to Airborne Radar. He is a fellow of the IET and the IEEE and holds a number of visiting positions at leading universities.