Atnaujinkite slapukų nuostatas

El. knyga: Homological Mirror Symmetry and Tropical Geometry

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The relationship between Tropical Geometry and Mirror Symmetry goes back to the work of Kontsevich and Y. Soibelman (2000), who applied methods of non-archimedean geometry (in particular, tropical curves) to Homological Mirror Symmetry. In combination with the subsequent work of Mikhalkin on the tropical approach to Gromov-Witten theory and the work of Gross and Siebert, Tropical Geometry has now become a powerful tool. Homological Mirror Symmetry is the area of mathematics concentrated around several categorical equivalences connecting symplectic and holomorphic (or algebraic) geometry. The central ideas first appeared in the work of Maxim Kontsevich (1993). Roughly speaking, the subject can be approached in two ways: either one uses Lagrangian torus fibrations of Calabi-Yau manifolds (the so-called Strominger-Yau-Zaslow picture, further developed by Kontsevich and Soibelman) or one uses Lefschetz fibrations of symplectic manifolds (suggested by Kontsevich and further developed b

y Seidel). Tropical Geometry studies piecewise-linear objects which appear as degenerations of the corresponding algebro-geometric objects.

Oren Ben-Bassat and Elizabeth Gasparim: Moduli Stacks of Bundles on Local Surfaces.- David Favero, Fabian Haiden and Ludmil Katzarkov: An orbit construction of phantoms, Orlov spectra and Knörrer Periodicity.- Stéphane Guillermou and Pierre Schapira: Microlocal theory of sheaves and Tamarkin s non displaceability theorem.- Sergei Gukov and Piotr Su kowski: A-polynomial, B-model and Quantization.- M. Kapranov, O. Schiffmann, E. Vasserot: Spherical Hall Algebra of Spec(Z).- Maxim Kontsevich and Yan Soibelman: Wall-crossing structures in Donaldson-Thomas invariants, integrable systems and mirror Symmetry.- Grigory Mikhalkin and Ilia Zharkov: Tropical eigen wave and intermediate Jacobians.- Andrew Neitzke: Notes on a new construction of hyperkahler metrics.- Helge Ruddat: Mirror duality of Landau-Ginzburg models via Discrete Legendre Transforms.- Nicolo Sibilla: Mirror Symmetry in dimension one and Fourier-Mukai transforms.- Alexander Soibelman: The very good property for moduli of pa

rabolic bundles and the additive Deligne-Simpson problem.
Moduli Stacks of Bundles on Local Surfaces
1(32)
Oren Ben-Bassat
Elizabeth Gasparim
An Orbit Construction of Phantoms, Orlov Spectra, and Knorrer Periodicity
33(10)
David Favero
Fabian Haiden
Ludmil Katzarkov
Microlocal Theory of Sheaves and Tamarkin's Non Displaceability Theorem
43(44)
Stephane Guillermou
Pierre Schapira
A-Polynomial, B-Model, and Quantization
87(66)
Sergei Gukov
Piotr Sulkowski
Spherical Hall Algebra of Spec(Z)
153(44)
M. Kapranov
O. Schiffmann
E. Vasserot
Wall-Crossing Structures in Donaldson--Thomas Invariants, Integrable Systems and Mirror Symmetry
197(112)
Maxim Kontsevich
Yan Soibelman
Tropical Eigenwave and Intermediate Jacobians
309(42)
Grigory Mikhalkin
Ilia Zharkov
Notes on a New Construction of Hyperkahler Metrics
351(26)
Andrew Neitzke
Mirror Duality of Landau--Ginzburg Models via Discrete Legendre Transforms
377(30)
Helge Ruddat
Mirror Symmetry in Dimension 1 and Fourier--Mukai Transforms
407(22)
Nicolo Sibilla
The Very Good Property for Moduli of Parabolic Bundles and the Additive Deligne--Simpson Problem
429
Alexander Soibelman