Atnaujinkite slapukų nuostatas

El. knyga: Homotopy of Operads and Grothendieck-Teichmueller Groups

Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The Grothendieck-Teichmuller group was defined by Drinfeld in quantum group theory with insights coming from the Grothendieck program in Galois theory. The ultimate goal of this book is to explain that this group has a topological interpretation as a group of homotopy automorphisms associated to the operad of little 2-discs, which is an object used to model commutative homotopy structures in topology. This volume gives a comprehensive survey on the algebraic aspects of this subject. The book explains the definition of an operad in a general context, reviews the definition of the little discs operads, and explains the definition of the Grothendieck-Teichmuller group from the viewpoint of the theory of operads. In the course of this study, the relationship between the little discs operads and the definition of universal operations associated to braided monoidal category structures is explained. Also provided is a comprehensive and self-contained survey of the applications of Hopf algebras to the definition of a rationalization process, the Malcev completion, for groups and groupoids. Most definitions are carefully reviewed in the book; it requires minimal prerequisites to be accessible to a broad readership of graduate students and researchers interested in the applications of operads.
Preliminaries xi
Preface xiii
Mathematical Objectives xvii
Foundations and Conventions xxvii
Reading Guide and Overview of this Volume xxxix
Part I From Operads to Grothendieck-Teichmiiller Groups
1(2)
Part 1(a) The General Theory of Operads
3(124)
Chapter 1 The Basic Concepts of the Theory of Operads
5(42)
1.1 The notion of an operad and of an algebra over an operad
6(17)
1.2 Categorical constructions for operads
23(14)
1.3 Categorical constructions for algebras over operads
37(7)
1.4 Appendix: Filtered colimits and reflexive coequalizers
44(3)
Chapter 2 The Definition of Operadic Composition Structures Revisited
47(52)
2.1 The definition of operads from partial composition operations
48(9)
2.2 The definition of unitary operads
57(17)
2.3 Categorical constructions for unitary operads
74(6)
2.4 The definition of connected unitary operads
80(10)
2.5 The definition of operads shaped on finite sets
90(9)
Chapter 3 Symmetric Monoidal Categories and Operads
99(28)
3.0 Commutative algebras and cocommutative coalgebras in symmetric monoidal categories
100(6)
3.1 Operads in general symmetric monoidal categories
106(6)
3.2 The notion of a Hopf operad
112(10)
3.3 Appendix: Functors between symmetric monoidal categories
122(5)
Part 1(b) Braids and E2-operads
127(98)
Chapter 4 The Little Discs Model of En-operads
129(30)
4.1 The definition of the little discs operads
130(10)
4.2 The homology (and the cohomology) of the little discs operads
140(10)
4.3 Outlook: Variations on the little discs operads
150(7)
4.4 Appendix: The symmetric monoidal category of graded modules
157(2)
Chapter 5 Braids and the Recognition of E2-operads
159(38)
5.0 Braid groups
160(7)
5.1 Braided operads and E2-operads
167(10)
5.2 The classifying spaces of the colored braid operad
177(10)
5.3 Fundamental groupoids and operads
187(7)
5.4 Outlook: The recognition of En-operads for n > 2
194(3)
Chapter 6 The Magma and Parenthesized Braid Operads
197(28)
6.1 Magmas and the parenthesized permutation operad
198(10)
6.2 The parenthesized braid operad
208(12)
6.3 The parenthesized symmetry operad
220(5)
Part 1(c) Hopf Algebras and the Malcev Completion
225(112)
Chapter 7 Hopf Algebras
227(50)
7.1 The notion of a Hopf algebra
228(8)
7.2 Lie algebras and Hopf algebras
236(22)
7.3 Lie algebras and Hopf algebras in complete filtered modules
258(19)
Chapter 8 The Malcev Completion for Groups
277(34)
8.1 The adjunction between groups and complete Hopf algebras
278(5)
8.2 The category of Malcev complete groups
283(10)
8.3 The Malcev completion functor on groups
293(3)
8.4 The Malcev completion of free groups
296(6)
8.5 The Malcev completion of semi-direct products of groups
302(9)
Chapter 9 The Malcev Completion for Groupoids and Operads
311(26)
9.0 The notion of a Hopf groupoid
312(3)
9.1 The Malcev completion for groupoids
315(13)
9.2 The Malcev completion of operads in groupoids
328(6)
9.3 Appendix: The local connectedness of complete Hopf groupoids
334(3)
Part 1(d) The Operadic Definition of the Grothendieck--Teichmiiller Group
337(92)
Chapter 10 The Malcev Completion of the Braid Operads and Drinfeld's Associators
339(60)
10.0 The Malcev completion of the pure braid groups and the Drinfeld--Kohno Lie algebras
341(8)
10.1 The Malcev completion of the braid operads and the Drinfeld--Kohno Lie algebra operad
349(6)
10.2 The operad of chord diagrams and Drinfeld's associators
355(13)
10.3 The graded Grothendieck--Teichmiiller group
368(17)
10.4 Tower decompositions, the graded Grothendieck--Teichmiiller Lie algebra and the existence of rational Drinfeld's associators
385(14)
Chapter 11 The Grothendieck--Teichmiiller Group
399(22)
11.1 The operadic definition of the Grothendieck--Teichmiiller group
400(8)
11.2 The action on the set of Drinfeld's associators
408(3)
11.3 Tower decompositions
411(3)
11.4 The graded Lie algebra of the Grothendieck--Teichmiiller group
414(7)
Chapter 12 A Glimpse at the Grothendieck Program
421(8)
Appendices
427(2)
Appendix A Trees and the Construction of Free Operads
429(48)
A.1 Trees
430(12)
A.2 Treewise tensor products and treewise composites
442(11)
A.3 The construction of free operads
453(9)
A.4 The construction of connected free operads
462(5)
A.5 The construction of coproducts with free operads
467(10)
Appendix B The Cotriple Resolution of Operads
477(26)
B.0 Tree morphisms
478(7)
B.1 The definition of the cotriple resolution of operads
485(13)
B.2 The monadic definition of operads
498(5)
Glossary of Notation 503(8)
Bibliography 511(10)
Index 521
Benoit Fresse, Universite de Lille 1, Villeneuve d'Ascq, France.