Atnaujinkite slapukų nuostatas

El. knyga: Host Stars and their Effects on Exoplanet Atmospheres: An Introductory Overview

  • Formatas: EPUB+DRM
  • Serija: Lecture Notes in Physics 955
  • Išleidimo metai: 23-May-2019
  • Leidėjas: Springer Nature Switzerland AG
  • Kalba: eng
  • ISBN-13: 9783030114527
  • Formatas: EPUB+DRM
  • Serija: Lecture Notes in Physics 955
  • Išleidimo metai: 23-May-2019
  • Leidėjas: Springer Nature Switzerland AG
  • Kalba: eng
  • ISBN-13: 9783030114527

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Like planets in our solar system, exoplanets form, evolve, and interact with their host stars in many ways. As exoplanets acquire material and grow to the final size, their atmospheres are subjected to intense UV and X-radiation and high-energy particle bombardment from the young host star. Whether a planet can retain its atmosphere and the conditions for significant mass loss both depend upon the strength of the host star's high-energy radiation and wind, the distance of the exoplanet from its host star, the gravitational potential of the exoplanet, and the initial  chemical composition of the exoplanet atmosphere.





 





This introductory overview describes the physical processes responsible for the emission of radiation and acceleration of winds of host stars that together control the environment of an exoplanet, focusing on topics that are critically important for understanding exoplanetary atmospheres but are usually not posed from the perspective of host stars. Accordingly, both host stars and exoplanets are not studied in isolation but are treated as integrated systems. Stellar magnetic fields, which are the energy source for activity phenomena including high-energy radiation and winds, play a critical role in determining whether exoplanets are habitable.





 





This text is primarily for researchers and graduate students who are studying exoplanet atmospheres and habitability, but who may not have a background in the physics and phenomenology of host stars that provide the environment in which exoplanets evolve. It provides a comprehensive overview of this broad topic rather than going deeply into many technical aspects but includes a large list of references to guide those interested in pursuing these questions.  Nonspecialists with a scientific background should also find this text a valuable resource for understanding the critical issues of contemporary exoplanet research.
1 Why Are Host Stars Important for Understanding Exoplanet Atmospheres?
1(4)
2 Stellar Activity-Phenomenology and General Principles
5(10)
2.1 Activity Phenomena and Activity Indicators
5(1)
2.2 What Is Stellar Activity?
6(5)
2.3 Effects of Activity on Exoplanet Measurements
11(4)
References
12(3)
3 Magnetic Fields--The Source of Stellar Activity
15(20)
3.1 Magnetic Fields or Magnetic Fluxes
16(5)
3.2 Magnetic Field Measurements from Unpolarized Spectra
21(2)
3.3 Magnetic Field Measurements from Spectropolarimetry and Magnetic Imaging
23(7)
3.4 Combining Spectroscopic and Spectropolarimetric Data
30(5)
References
32(3)
4 Stellar Chromospheres: The Source of UV Emission
35(26)
4.1 Chromospheric Radiation and Spectroscopic Diagnostics
35(8)
4.2 Stellar Atmosphere Regions
43(3)
4.3 Semiempirical Models of the Solar Atmosphere
46(4)
4.4 Semiempirical Models of Stellar Atmospheres and Their Spectroscopic Diagnostics
50(2)
4.5 Energy Balance in Stellar Chromospheres
52(1)
4.6 Composite, Multidimensional and Time-Dependent Models
53(3)
4.7 Does the Sun Have a Twin?
56(5)
References
56(5)
5 Stellar Coronae: The Source of X-ray Emission
61(18)
5.1 X-ray Observations Across the Hertzsprung-Russell Diagram
61(4)
5.2 Ionization Equilibria in Stellar Coronal Plasmas
65(1)
5.3 X-ray Spectroscopy and Spectral Inversion
66(5)
5.4 Coronal Emission Lines at Wavelengths Outside of the X-ray Region
71(2)
5.5 Coronal Emission at Radio Wavelengths
73(6)
References
76(3)
6 Reconstructing the Missing Stellar Emission
79(32)
6.1 Lyman-α Emission Line
79(10)
6.1.1 Using Interstellar Medium Absorption Data
84(1)
6.1.2 Solving for the Stellar Lyman-a Profile and Interstellar Parameters Simultaneously
85(2)
6.1.3 Inverting Fluorescent Spectra
87(2)
6.2 Extreme Ultraviolet Emission
89(22)
6.2.1 The Solar EUV Spectrum and the Effects of Interstellar Absorption on Stellar EUV Spectra
89(6)
6.2.2 Estimating the Solar EUV Flux over Time Using Solar Analogs
95(2)
6.2.3 Estimating the Stellar EUV Flux from the Observed Short Wavelength Portion of the EUV Spectrum and the Solar Ratio
97(1)
6.2.4 Computing the EUV Spectrum from an Emission Measure Distribution Analysis
98(3)
6.2.5 Simulating the EUV Spectrum from Lyman-α and EUVE Data
101(2)
6.2.6 Estimating Stellar EUV Spectra by Rescaling the Solar Irradiance Spectrum
103(1)
6.2.7 Computing Stellar EUV Spectra from Model Atmospheres
104(2)
References
106(5)
7 Panchromatic Spectra of Exoplanet Host Stars
111(16)
7.1 Spectral Energy Distribution of the Sun and Other Variable G-Type Stars
111(2)
7.2 Spectral Energy Distributions of K and M Stars
113(7)
7.3 Stellar X-ray and EUV Spectra and Photometry
120(2)
7.4 Stellar UV, Optical, and Infrared Spectra
122(5)
References
124(3)
8 Stellar Winds
127(30)
8.1 Stellar Winds Across the H-R Diagram
127(3)
8.2 Observations of Mass Loss in Solar-Type and Cooler Stars
130(13)
8.2.1 The Astrosphere Method for Estimating Stellar Mass Loss
131(6)
8.2.2 Upper Limits from Radio Observations
137(1)
8.2.3 Upper Limits from X-ray Observations
138(1)
8.2.4 Mass-Loss Rates from Transit Observations
139(1)
8.2.5 Mass-Loss Rates from M Dwarf Companions of White Dwarfs
140(1)
8.2.6 Could Coronal Mass Ejections be Important for Mass Loss?
141(2)
8.2.7 Mass-Loss Rates from Slingshot Prominences
143(1)
8.3 Simulations and Models
143(8)
8.4 For the Future
151(6)
References
152(5)
9 Activity Indicator Correlations
157(22)
9.1 Correlations of Activity Indicators with Stellar Parameters: Mass, Age, and Rotation Period
157(11)
9.1.1 Rotation Evolution and Activity Indicators
161(4)
9.1.2 Which Is the Better Parameter: Rossby Number or Rotation Period?
165(3)
9.2 Correlations Among Activity Indicators
168(11)
9.2.1 Correlations Among Chromosphere and Transition Region Activity Indicators
168(4)
9.2.2 Correlations Among Chromosphere and Coronal Activity Indicators
172(1)
9.2.3 Correlations Among Coronal Activity Indicators
173(2)
References
175(4)
10 Host Star Driven Exoplanet Mass Loss and Possible Surface Water
179(32)
10.1 Thermally Driven Mass Loss
179(11)
10.2 Non-thermally Driven Mass Loss
190(1)
10.3 Habitable Zone: What Does It Mean?
191(3)
10.4 Can Exoplanets Retain Their Atmospheres in Their Space Climate Environment?
194(9)
10.4.1 Case Study: Proxima B
195(3)
10.4.2 Case Study: The TRAPPIST-1 Exoplanets
198(1)
10.4.3 Case Study: Solar-Like Stars
199(2)
10.4.4 Case Study: Mars
201(2)
10.5 Which Star Types Are Best for Hosting a Habitable Planet?
203(8)
References
206(5)
11 Host Star Driven Photochemistry in Exoplanet Atmospheres
211(18)
11.1 Photochemistry of Important Molecules
211(2)
11.2 Photochemical Atmospheres
213(5)
11.3 Is Oxygen a Reliable Biosignature?
218(2)
11.4 What Are Reliable Biosignatures?
220(2)
11.5 Can Featureless Absorption Spectra Be Explained by High Altitude Photochemical Haze?
222(7)
References
225(4)
12 Space Weather: The Effects of Host Star Flares on Exoplanets
229(14)
12.1 Important Characteristics of Flares
229(2)
12.2 Flares and Superflares on the Sun
231(2)
12.3 Flares and Superflares on Stars
233(5)
12.4 Space Weather and Habitability
238(5)
References
240(3)
13 The Effects of Heterogeneous Stellar Surfaces on the Analysis of Exoplanet Transit Light Curves and Spectra
243(14)
13.1 Heterogeneous Surfaces of the Sun and Sun-Like Stars: Spots and Faculae
244(4)
13.2 Heterogeneous Surfaces of Stars
248(5)
13.3 Effects of Heterogeneous Surfaces on the Analysis of Exoplanet Transit Spectra
253(4)
References
254(3)
14 Star-Planet Interactions
257(14)
14.1 Tidal and Magnetic Interactions
257(3)
14.2 Observational Searches for SPI
260(6)
14.2.1 Monitoring of Individual Stars
260(4)
14.2.2 Comparing Stars with and Without Planets
264(2)
14.3 Can Exoplanet Magnetic Fields Be Detected?
266(5)
References
268(3)
15 Summary and Final Comments
271
References
273
Prof. Linsky's research involves the analysis of high-resolution stellar spectra, primarily in the ultraviolet, to measure the physical properties of stars, the atmospheres of exoplanets, gas in the local interstellar medium, and the abundance of deuterium in the Galaxy. With colleagues and students he has characterized and modelled the chromospheres and higher temperature layers of stars cooler than the Sun including pre-main sequence stars, M dwarf stars, and the host stars of exoplanets. Jeffrey Linsky has published 582 papers in the refereed astrophysical literature with a citation h index of 75.