Atnaujinkite slapukų nuostatas

El. knyga: Hybrid Anisotropic Materials for Wind Power Turbine Blades

(Neo-Advent Technologies, LLC, USA)
  • Formatas: 253 pages
  • Išleidimo metai: 19-Apr-2016
  • Leidėjas: CRC Press Inc
  • Kalba: eng
  • ISBN-13: 9781040198162
  • Formatas: 253 pages
  • Išleidimo metai: 19-Apr-2016
  • Leidėjas: CRC Press Inc
  • Kalba: eng
  • ISBN-13: 9781040198162

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Based on rapid technological developments in wind power, governments and energy corporations are aggressively investing in this natural resource. Illustrating some of the crucial new breakthroughs in structural design and application of wind energy generation machinery, Hybrid Anisotropic Materials for Wind Power Turbine Blades explores new automated, repeatable production techniques that expand the use of robotics and process controls. These practices are intended to ensure cheaper fabrication of less-defective anisotropic material composites used to manufacture power turbine blades.

This book covers new methods of casting or pultrusion that reduce thickness in the glass- and graphite-fiber laminate prepregs used in load-bearing skin blades and web shear spars. This optimized process creates thinner, more cost-effective prepegs that still maintain strength and reliability. The book also addresses a wide range of vital technical topics, including:











Selection of carbon/fiberglass materials





Estimation of combination percentages





Minimization and optimal placement of shear webs (spars)





Advantages of resin, such as lower viscosity and curing time





Strength and manufacturing criteria for selecting anisotropic materials and turbine blade materials





Analysis of dynamic fatigue life and vibration factors in blade design





NDE methods to predict and control deflections, stiffness, and strength

Written by a prolific composite materials expert with more than 40 years of research experience, this reference is invaluable for a new generation of composite designers, graduate students, and industry professionals involved in wind power system design. Assessing significant required changes in transmission, manufacturing, and markets, this resource outlines innovative methods to help the U.S. Department of Energy meet its goal of having wind energy account for 20 percent of total generated energy by 2030.
Preface xi
Acknowledgments xv
About the Author xvii
1 Applications throughout the World
1(14)
1.1 Introduction
1(1)
1.2 Large Wind: Blades and Rotors
1(1)
1.2.1 Key Blade and Rotor Manufacturing Challenges
2(1)
1.3 How Wind Turbines Work
2(6)
1.3.1 Types of Wind Turbines
5(1)
1.3.2 Sizes of Wind Turbines
5(1)
1.3.3 Inside the Wind Turbine
5(2)
1.3.4 Contradictory Goals
7(1)
1.3.5 Smooth and Continuous Development
7(1)
1.4 Market for Wind Turbine Composites
8(7)
1.4.1 Introduction
8(1)
1.4.2 Weight and Cost
8(1)
1.4.3 Technology Evaluation
9(1)
1.4.4 Market and Turbine Components Material Data
9(1)
1.4.4.1 Wind Energy Market Dynamics
9(1)
1.4.4.2 About Owens Corning
10(1)
1.4.4.3 Wind Turbine Database
10(1)
1.4.5 Components Development Trends
11(1)
1.4.5.1 Rotor Blades
11(1)
1.4.5.2 Gear Boxes
11(2)
1.4.5.3 Nacelles
13(1)
1.4.5.4 Towers
13(1)
References
13(2)
2 Design Wind Power Turbine
15(40)
2.1 Introduction
15(1)
2.2 New Design Concept
16(1)
2.3 Rotor Design
17(2)
2.4 Transmission for Wind Turbine Blades
19(2)
2.5 Blades Design
21(6)
2.5.1 Theoretical Investigation
23(3)
2.5.2 Experimental Investigation
26(1)
2.6 Power Control of Wind Turbines
27(2)
2.6.1 Pitch-Controlled Wind Turbines
27(1)
2.6.2 Hydraulic Pitch Control
27(1)
2.6.3 Stall-Controlled Wind Turbines
28(1)
2.6.4 Active Stall-Controlled Wind Turbines
28(1)
2.6.5 Individual Pitch Control
29(1)
2.6.6 Other Power Control Methods
29(1)
2.7 Wind Turbine Components
29(3)
2.7.1 History
30(1)
2.7.2 Components
31(1)
2.7.2.1 Gearbox
31(1)
2.7.2.2 Gear Rim and Pinions
31(1)
2.8 Proposal for Robust Redesign Turbine Blades
32(5)
2.8.1 Introduction
32(1)
2.8.2 Loads Acting Outside Wind Turbine Blades
32(1)
2.8.3 The Automatic 3-Axial Braiding Process
33(1)
2.8.4 Pultrusion Process
34(2)
2.8.5 Shell Curing Mold Prepreg Process
36(1)
2.9 Minimizing the Optimal Number of Shear Webs (Spars) and Their Placement
37(9)
2.9.1 Introduction
37(2)
2.9.2 Shear Web Analysis
39(7)
2.9.3 Conclusions
46(1)
2.10 Skin Stiffness and Thickness Blade Calculation
46(4)
2.10.1 Introduction
46(1)
2.10.2 Stiffness Calculation
47(1)
2.10.3 Skin Thickness Calculation of Blades
47(2)
2.10.3.1 Experimental Results
49(1)
2.11 Deflection of Wind Hybrid Blades
50(5)
2.11.1 Experimental Investigation
53(1)
2.11.2 Conclusion
53(1)
References
53(2)
3 Materials for Turbine Power Blades, Reinforcements, and Resins
55(34)
3.1 Materials Requirements
55(1)
3.2 Structural Composite Material
56(5)
3.3 Resins Advantages: Low Viscosity and Low Curing Time
61(1)
3.4 Rapid Curing Resin System
62(4)
3.5 Reinforced Material: Carbon Fiber and Glass Fiber Fabrics
66(4)
3.5.1 Carbon Fibers
66(1)
3.5.2 Twill Weave Kevlar®
66(1)
3.5.3 S2-Glass
67(1)
3.5.4 E2-Glass
68(1)
3.5.5 Gel Coat
69(1)
3.6 Core Materials: Honeycomb Sandwich Structures and Adhesives
70(4)
3.6.1 Introduction
70(1)
3.6.2 Core Materials
70(4)
3.7 Material Promises a Better Blade Resistance to Wear and Tear
74(2)
3.7.1 Owens Corning's Ultrablade Fabric Solutions
74(1)
3.7.2 Film Layer Protects Wind Turbine Blades against Electromagnetic Fields
75(1)
3.7.3 Painting of Wind Turbines
75(1)
3.8 Field Study of Wind Turbine Blade Erosion
76(5)
3.8.1 Introduction
76(1)
3.8.2 Field Study and Maintenance
76(1)
3.8.3 Polybutadiene Resins
77(1)
3.8.3.1 Hydroxyl Functionality
77(1)
3.8.3.2 Hydrolytic Stability
78(1)
3.8.3.3 High Hydrophobicity
78(1)
3.8.3.4 Low Temperature Flexibility
79(1)
3.8.3.5 Adhesion Properties
80(1)
3.8.4 AIRTHANE PET-91A-Based Elastomers
80(1)
3.8.5 Conclusion
81(1)
3.9 Rheological Behavior of Flow Resins
81(8)
3.9.1 Introduction
81(1)
3.9.2 Viscosity
82(1)
3.9.3 Effect of Styrene Contents
82(1)
3.9.4 Effect of Temperature
83(1)
3.9.5 Effect of Molecular Weight
84(1)
3.9.6 Relations between the Viscosity, Processing, Temperature, and Glass Transition Temperature
85(2)
References
87(2)
4 Manufacturing Technologies for Turbine Power Blades
89(30)
4.1 Introduction
89(1)
4.2 Wet Hand Lay-Up Process
89(1)
4.3 Filament Winding
90(2)
4.4 Prepreg Technology
92(1)
4.5 Resin Infusion Technology
93(1)
4.6 Out-of-Autoclave Composite Prepreg Process
94(4)
4.6.1 Introduction
94(1)
4.6.2 Curing Laminates without Autoclave
95(1)
4.6.3 Select Technological Parameters and Cure Conditions
96(2)
4.7 Developing Technology for Robust Automation Winding Process
98(2)
4.7.1 Introduction
98(1)
4.7.1.1 Fiber Placement Process
98(1)
4.7.1.2 Continuous Molding Prepreg Process
99(1)
4.8 Infusion Molding Process
100(6)
4.8.1 Introduction
100(6)
4.8.2 Conclusion
106(1)
4.9 Rotational Molding
106(13)
4.9.1 Introduction
106(1)
4.9.2 History
106(1)
4.9.3 Equipment and Tooling
107(1)
4.9.4 Standard Setup and Equipment for Rotational Molding
108(1)
4.9.4.1 Rock and Roll Rotating Molding Machines
108(1)
4.9.4.2 Clamshell Machine
108(1)
4.9.4.3 Vertical or Up and Over Rotational Machine
108(1)
4.9.4.4 Shuttle or Swing Arm Machine
108(1)
4.9.4.5 Carousel Machine
109(1)
4.9.5 Production Process
109(1)
4.9.6 Recent Improvements
110(1)
4.9.7 Mold Release Agents
111(1)
4.9.8 Materials
111(1)
4.9.8.1 Natural Materials
112(1)
4.9.9 Products
112(1)
4.9.9.1 Product Design
112(1)
4.9.9.2 Designing for Rotational Molding
113(1)
4.9.9.3 Material Limitations and Considerations
113(1)
4.9.9.4 Wall Thickness
113(1)
4.9.10 Process: Advantages, Limitations, and Material Requirements
114(1)
4.9.10.1 Limitations
115(1)
4.9.11 Conclusions
115(1)
References
115(4)
5 Dynamic Strength
119(44)
5.1 Stress and Vibration Analysis of Composite Wind Turbine Blades
119(1)
5.1.1 Introduction
119(1)
5.2 Stress Analysis of Propeller Blades
119(2)
5.3 Theoretical Investigation
121(5)
5.4 Vibration Analysis
126(6)
5.5 Experimental Analysis
132(2)
5.5.1 Conclusions
134(1)
5.6 Mechanical Measurements Deformations in Hybrid Turbine Blades
134(3)
5.6.1 Introduction
134(1)
5.6.2 Strain-Stress Relation
135(2)
5.7 Mechanical and Thermal Properties
137(4)
5.7.1 Introduction
137(1)
5.7.2 History of Investigating Mechanical Properties
138(1)
5.7.3 Testing Mechanical and Thermal Properties of the Prepreg Laminates
139(1)
5.7.4 Conclusions
139(2)
5.8 Fatigue Strength and Weibull Analysis
141(9)
5.8.1 Introduction
141(1)
5.8.2 Fatigue Strength Prediction
141(5)
5.8.3 Static and Dynamic Fatigue Strength
146(1)
5.8.4 Experimental Investigation
147(2)
5.8.5 Concluding Remarks
149(1)
5.9 Dynamic Analysis: Fourier Function for Prediction of Fatigue Lifecycle Test
150(4)
5.9.1 Introduction
150(1)
5.9.2 Theoretical Investigation
151(1)
5.9.3 Experimental Investigation
152(2)
5.9.4 Conclusion
154(1)
5.10 Simulating Dynamics, Durability, and Noise Emission of Wind Turbines
154(9)
5.10.1 Introduction
154(1)
5.10.2 Engineering Challenges
154(1)
5.10.3 An Integrated Simulation Process
155(1)
5.10.4 Multibody Simulation to Assess Dynamic Behavior
155(2)
5.10.5 Optimizing Overall Durability Performance
157(1)
5.10.6 Complying with Noise Regulations
158(1)
5.10.7 Optimizing the Overall Wind Turbine System Behavior
158(2)
5.10.8 Conclusions
160(1)
References
160(3)
6 NDE Digital Methods for Predicting Stiffness and Strength of Wind Turbine Blades
163(36)
6.1 Ultrasonic Nondestructive Method to Determine Modulus of Elasticity of Wind Turbine Blades
163(9)
6.1.1 Introduction
163(1)
6.1.2 Theory and Application of Ultrasonic Method
163(8)
6.1.3 Conclusions
171(1)
6.2 Dynamic Local Mechanical and Thermal Strength Prediction Using NDT for Material Parameters Evaluation of Wind Turbine Blades
172(9)
6.2.1 Introduction
172(6)
6.2.2 Experimental Investigation Results
178(2)
6.2.3 Concluding Remarks
180(1)
6.3 Noncontact Measurement of Delaminating Cracks Predicts the Failure in Hybrid Wind Turbine Blades
181(5)
6.3.1 Introduction
181(1)
6.3.2 Damage Mechanisms of Failure
181(2)
6.3.3 Temperature Measurement of the Surface of an FRP
183(2)
6.3.4 Fatigue Strength Improvement
185(1)
6.3.5 Conclusions
185(1)
6.4 Nondestructive Inspection Technologies for Wind Turbine Blades
186(13)
6.4.1 Introduction
186(1)
6.4.2 Measurement Concept
187(1)
6.4.3 Application of the PSP/TSP Technique
187(3)
6.4.4 Luminescent Paint Control
190(3)
6.4.5 Experimental Investigation
193(2)
6.4.6 Concluding Remarks
195(1)
References
195(4)
7 Aerodynamic Structural Noise
199(20)
7.1 Introduction
199(1)
7.2 Wind Turbine Aerodynamics
199(4)
7.2.1 Axial Momentum and the Betz Limit
199(4)
7.3 Measuring Wind Turbine Noise
203(1)
7.4 Reduce Noise in Wind Turbine Blades
203(4)
7.5 Sound Emissions, Temperature and Pressure
207(4)
7.5.1 Density, Temperature, and Pressure Correlation
208(1)
7.5.2 Water Vapor
208(3)
7.6 Offshore Support Structures for Power Wind Turbine Blades
211(8)
7.6.1 Introduction
211(1)
7.6.1.1 Support Structure Design
211(1)
7.6.2 Conclusion
212(1)
7.6.3 Offshore Wind Initiative
212(5)
References
217(2)
Index 219
Yosif Golfman has been involved in composites research since 1960 and is currently working as a Consultant in Sudbury, Massachusetts.