Preface |
|
xvi | |
Authors' CVs |
|
xviii | |
1 Introduction |
|
1 | (18) |
|
1.1 Definition and purposes of dams |
|
|
1 | (1) |
|
1.2 Worldwide importance of dams and reservoirs |
|
|
2 | (4) |
|
1.3 Historical overview and challenges of dam engineering |
|
|
6 | (2) |
|
1.4 Dams as critical water infrastructures |
|
|
8 | (1) |
|
1.5 Safe operation of dams and reservoirs through advanced dam safety concepts: example of Switzerland |
|
|
8 | (3) |
|
1.6 Appurtenant structures of dams |
|
|
11 | (3) |
|
|
11 | (1) |
|
1.6.2 Spillways including overflow and dissipation structures |
|
|
11 | (1) |
|
|
12 | (1) |
|
|
13 | (1) |
|
|
13 | (1) |
|
1.7 Hydraulic engineering of dams: structure of the book |
|
|
14 | (1) |
|
|
15 | (4) |
2 Frontal crest overflow |
|
19 | (76) |
|
|
19 | (9) |
|
2.1.1 Overflow structures |
|
|
19 | (4) |
|
|
23 | (4) |
|
2.1.3 Significance of overflow structure |
|
|
27 | (1) |
|
|
28 | (16) |
|
2.2.1 Crest shapes and standard crest |
|
|
28 | (4) |
|
2.2.2 Free surface profile and discharge characteristics |
|
|
32 | (2) |
|
2.2.3 Bottom pressure characteristics |
|
|
34 | (1) |
|
2.2.4 Velocity distribution |
|
|
35 | (2) |
|
|
37 | (1) |
|
|
38 | (2) |
|
2.2.7 Overflow crest gates |
|
|
40 | (4) |
|
2.3 Additional weir effects |
|
|
44 | (23) |
|
2.3.1 Influence of weir face slopes |
|
|
44 | (9) |
|
|
53 | (14) |
|
|
67 | (14) |
|
2.4.1 Real fluid effects in weir flow |
|
|
67 | (3) |
|
2.4.2 Boundary layer development |
|
|
70 | (5) |
|
2.4.3 Discharge coefficient |
|
|
75 | (3) |
|
2.4.4 Round-crested weir flow analogy |
|
|
78 | (3) |
|
|
81 | (3) |
|
|
84 | (4) |
|
|
88 | (7) |
3 Spatial crest overflow |
|
95 | (90) |
|
|
95 | (1) |
|
|
96 | (21) |
|
|
96 | (3) |
|
|
99 | (2) |
|
3.2.3 Spatial flow features |
|
|
101 | (2) |
|
3.2.4 Examples of physical model studies |
|
|
103 | (14) |
|
3.3 Morning glory overfall |
|
|
117 | (19) |
|
|
117 | (3) |
|
|
120 | (2) |
|
3.3.3 Discharge and pressure characteristics |
|
|
122 | (1) |
|
3.3.4 Vertical shaft structure |
|
|
123 | (2) |
|
|
125 | (3) |
|
|
128 | (8) |
|
|
136 | (12) |
|
3.4.1 Historical evolution |
|
|
136 | (8) |
|
|
144 | (4) |
|
|
148 | (17) |
|
3.5.1 Historical evolution |
|
|
148 | (2) |
|
3.5.2 PKW types and notation |
|
|
150 | (1) |
|
|
151 | (6) |
|
3.5.4 Further design aspects |
|
|
157 | (4) |
|
3.5.5 Downstream toe scour on riverbed |
|
|
161 | (3) |
|
|
164 | (1) |
|
|
165 | (5) |
|
|
165 | (1) |
|
|
166 | (2) |
|
|
168 | (2) |
|
|
170 | (4) |
|
|
174 | (6) |
|
|
180 | (5) |
4 Spillway chute |
|
185 | (162) |
|
|
185 | (1) |
|
|
186 | (36) |
|
|
186 | (2) |
|
4.2.2 Surface air entrainment |
|
|
188 | (13) |
|
4.2.3 Development of aerated chute flow |
|
|
201 | (8) |
|
4.2.4 Spacing of chute aerators |
|
|
209 | (4) |
|
4.2.5 Air transport phenomena |
|
|
213 | (9) |
|
4.3 Uniform-aerated chute flow |
|
|
222 | (7) |
|
4.3.1 Experimental approach |
|
|
222 | (7) |
|
|
229 | (25) |
|
4.4.1 Motivation and historical development |
|
|
229 | (2) |
|
4.4.2 Cavitation potential |
|
|
231 | (2) |
|
4.4.3 Cavitation protection |
|
|
233 | (2) |
|
4.4.4 Aerator geometry and air supply system |
|
|
235 | (4) |
|
4.4.5 Air transport downstream of aerator |
|
|
239 | (5) |
|
4.4.6 Jet length and air entrainment coefficient |
|
|
244 | (1) |
|
4.4.7 Downstream air concentration development |
|
|
245 | (2) |
|
4.4.8 Effect of pre-aerated approach flow |
|
|
247 | (2) |
|
4.4.9 Steep deflectors and cavity sub-pressure |
|
|
249 | (3) |
|
|
252 | (2) |
|
|
254 | (15) |
|
|
254 | (4) |
|
|
258 | (2) |
|
|
260 | (5) |
|
|
265 | (4) |
|
|
269 | (8) |
|
4.6.1 Definition and early advances |
|
|
269 | (5) |
|
4.6.2 Advances from Montuori |
|
|
274 | (3) |
|
|
277 | (42) |
|
|
277 | (3) |
|
|
280 | (4) |
|
4.7.3 General considerations |
|
|
284 | (11) |
|
|
295 | (24) |
|
|
319 | (5) |
|
|
324 | (13) |
|
|
337 | (10) |
5 Dissipation structures |
|
347 | (60) |
|
|
347 | (3) |
|
|
350 | (19) |
|
5.2.1 Classical hydraulic jump |
|
|
350 | (4) |
|
|
354 | (7) |
|
5.2.3 Undular hydraulic jump |
|
|
361 | (8) |
|
|
369 | (12) |
|
|
369 | (1) |
|
|
369 | (3) |
|
|
372 | (1) |
|
5.3.4 Abruptly expanding stilling basin |
|
|
373 | (4) |
|
5.3.5 Slotted-bucket stilling basin |
|
|
377 | (1) |
|
5.3.6 Basin characteristics |
|
|
377 | (4) |
|
|
381 | (3) |
|
5.4.1 Basic flow features |
|
|
381 | (1) |
|
5.4.2 Drop impact structures |
|
|
382 | (1) |
|
5.4.3 Scour characteristics at unlined drop structures |
|
|
382 | (2) |
|
|
384 | (5) |
|
|
384 | (1) |
|
|
385 | (2) |
|
|
387 | (2) |
|
|
389 | (3) |
|
|
392 | (2) |
|
|
394 | (13) |
6 Ski jump and plunge pool |
|
407 | (140) |
|
|
407 | (1) |
|
|
408 | (34) |
|
6.2.1 Description of structure and takeoff |
|
|
408 | (3) |
|
6.2.2 Jet trajectory and disintegration |
|
|
411 | (4) |
|
6.2.3 Bucket pressure, energy dissipation and choking features |
|
|
415 | (7) |
|
6.2.4 Ski jump with triangular bucket |
|
|
422 | (10) |
|
6.2.5 Air entrainment in ski jump jets |
|
|
432 | (8) |
|
6.2.6 Generalized jet air concentration features |
|
|
440 | (2) |
|
|
442 | (9) |
|
6.3.1 Types of bucket geometries |
|
|
442 | (4) |
|
6.3.2 Horizontal triangular-shaped flip bucket |
|
|
446 | (5) |
|
|
451 | (47) |
|
6.4.1 Granular scour and assessment methods |
|
|
451 | (2) |
|
6.4.2 Effect of jet air content |
|
|
453 | (8) |
|
6.4.3 Hydraulics of plane plunge pool scour |
|
|
461 | (12) |
|
6.4.4 Hydraulics of spatial plunge pool scour |
|
|
473 | (10) |
|
6.4.5 3D Flow features in plunge pool |
|
|
483 | (7) |
|
6.4.6 Temporal evolution of spatial plunge pool scour |
|
|
490 | (8) |
|
|
498 | (27) |
|
6.5.1 Introduction and challenges |
|
|
498 | (3) |
|
6.5.2 Comprehensive scour method |
|
|
501 | (8) |
|
6.5.3 CSM with active jet air entrainment |
|
|
509 | (3) |
|
6.5.4 Difficulties in estimating scour depth |
|
|
512 | (4) |
|
6.5.5 Measures for scour control |
|
|
516 | (5) |
|
6.5.6 Case study: Kariba Dam scour hole |
|
|
521 | (4) |
|
|
525 | (7) |
|
|
532 | (6) |
|
|
538 | (9) |
7 River diversion structures |
|
547 | (74) |
|
|
547 | (2) |
|
|
549 | (23) |
|
|
549 | (1) |
|
|
550 | (1) |
|
|
551 | (5) |
|
|
556 | (4) |
|
|
560 | (1) |
|
7.2.6 Erosion protection at tunnel outlet |
|
|
561 | (6) |
|
7.2.7 Surface protection of cofferdams |
|
|
567 | (5) |
|
|
572 | (3) |
|
7.3.1 Effect of constriction |
|
|
572 | (1) |
|
|
573 | (1) |
|
|
574 | (1) |
|
|
575 | (5) |
|
|
575 | (4) |
|
|
579 | (1) |
|
7.5 Pier and abutment scour |
|
|
580 | (25) |
|
|
580 | (2) |
|
|
582 | (1) |
|
7.5.3 Scour depth equation |
|
|
583 | (3) |
|
7.5.4 Limitations and further results |
|
|
586 | (2) |
|
7.5.5 Effect of flood wave |
|
|
588 | (6) |
|
7.5.6 Protection against scour using riprap |
|
|
594 | (11) |
|
|
605 | (3) |
|
|
608 | (3) |
|
|
611 | (10) |
8 Intakes and outlets |
|
621 | (116) |
|
|
621 | (2) |
|
8.2 High submergence intakes |
|
|
623 | (5) |
|
|
623 | (1) |
|
|
624 | (2) |
|
|
626 | (2) |
|
8.3 Low submergence intakes |
|
|
628 | (13) |
|
|
628 | (2) |
|
8.3.2 Vertical intake vortex |
|
|
630 | (2) |
|
8.3.3 Limit or critical intake submergence |
|
|
632 | (2) |
|
|
634 | (5) |
|
8.3.5 Design recommendations |
|
|
639 | (2) |
|
|
641 | (3) |
|
8.4.1 Floating debris and trash-rack vibrations |
|
|
641 | (3) |
|
8.4.2 Emergency gate closure |
|
|
644 | (1) |
|
|
644 | (28) |
|
|
644 | (2) |
|
8.5.2 Vertical planar gate flow |
|
|
646 | (9) |
|
8.5.3 Hinged sloping flap gate |
|
|
655 | (7) |
|
8.5.4 Hydraulics of standard vertical gate |
|
|
662 | (10) |
|
|
672 | (43) |
|
|
672 | (4) |
|
|
676 | (4) |
|
|
680 | (2) |
|
8.6.4 Hydraulics of high-head gates |
|
|
682 | (2) |
|
8.6.5 Cavitation and cavitation damage |
|
|
684 | (6) |
|
8.6.6 Passive and active air entrainment |
|
|
690 | (3) |
|
8.6.7 Interaction of water flow and air entrainment |
|
|
693 | (9) |
|
8.6.8 Recent experimentation on air demand |
|
|
702 | (13) |
|
|
715 | (5) |
|
|
720 | (7) |
|
|
727 | (10) |
9 Reservoir sedimentation |
|
737 | (80) |
|
9.1 Involved processes and sustainable reservoir use |
|
|
737 | (1) |
|
9.2 Sedimentation rate and sediment distribution |
|
|
738 | (2) |
|
9.3 Evolution of knowledge and management competence |
|
|
740 | (1) |
|
9.4 Measures against reservoir sedimentation |
|
|
741 | (17) |
|
|
741 | (2) |
|
9.4.2 Measures in catchment area |
|
|
743 | (2) |
|
9.4.3 Measures in reservoir |
|
|
745 | (10) |
|
|
755 | (3) |
|
9.5 Sediment bypass tunnel |
|
|
758 | (24) |
|
|
758 | (3) |
|
9.5.2 Suitable bypassing discharge and target sediment granulometry |
|
|
761 | (1) |
|
|
762 | (5) |
|
9.5.4 Hydro-abrasion processes |
|
|
767 | (2) |
|
9.5.5 Bed load particle motion dynamics |
|
|
769 | (1) |
|
9.5.6 Mechanistic abrasion model |
|
|
770 | (2) |
|
|
772 | (1) |
|
9.5.8 Design of tunnel invert lining |
|
|
773 | (4) |
|
9.5.9 Tunnel operation, maintenance, and rehabilitation |
|
|
777 | (3) |
|
9.5.10 Instrumentation and monitoring techniques |
|
|
780 | (1) |
|
9.5.11 Ecological impacts of SBT operation |
|
|
780 | (2) |
|
|
782 | (13) |
|
|
782 | (2) |
|
9.6.2 Plunge point and equilibrium flow |
|
|
784 | (3) |
|
|
787 | (2) |
|
|
789 | (2) |
|
9.6.5 Control by opposing jets |
|
|
791 | (4) |
|
|
795 | (1) |
|
9.7 Sedimentation control |
|
|
795 | (4) |
|
9.7.1 Turbulent suspension |
|
|
795 | (2) |
|
9.7.2 Recommendations on turbidity current venting |
|
|
797 | (2) |
|
|
799 | (1) |
|
9.7.4 Selection of reservoir geometry and locations of inlets and outlets |
|
|
799 | (1) |
|
9.8 Secondary hydraulic effects |
|
|
799 | (4) |
|
|
799 | (1) |
|
|
800 | (3) |
|
9.8.3 Replenishment or disposal of sediments |
|
|
803 | (1) |
|
|
803 | (3) |
|
|
806 | (8) |
|
|
814 | (3) |
10 Impulse waves in reservoirs |
|
817 | (126) |
|
|
817 | (1) |
|
10.2 Fundamental approaches |
|
|
818 | (13) |
|
10.2.1 Wave theories and impulse waves |
|
|
818 | (2) |
|
10.2.2 Wave generation by moving wedge |
|
|
820 | (2) |
|
10.2.3 Wave generation by falling mass |
|
|
822 | (2) |
|
10.2.4 Wave run-up and overtopping features |
|
|
824 | (7) |
|
10.3 2D impulse wave generation and propagation |
|
|
831 | (17) |
|
10.3.1 Review of research activities |
|
|
831 | (1) |
|
|
832 | (3) |
|
10.3.3 Experimental results |
|
|
835 | (13) |
|
|
848 | (13) |
|
10.4.1 Motivation and experimentation |
|
|
848 | (2) |
|
10.4.2 Experimental results and discussion |
|
|
850 | (8) |
|
10.4.3 Shortcut on nonlinear wave theories |
|
|
858 | (3) |
|
10.5 Transformation of solitary wave to overland flow |
|
|
861 | (18) |
|
10.5.1 Motivation and experimentation |
|
|
861 | (5) |
|
|
866 | (2) |
|
10.5.3 Plane overland flow |
|
|
868 | (11) |
|
10.6 Underwater deposition features |
|
|
879 | (7) |
|
10.6.1 Motivation and data basis |
|
|
879 | (2) |
|
|
881 | (5) |
|
10.7 Rigid dam overtopping |
|
|
886 | (9) |
|
10.7.1 Motivation and experimentation |
|
|
886 | (3) |
|
10.7.2 Overtopping processes |
|
|
889 | (1) |
|
10.7.3 Experimental results |
|
|
890 | (5) |
|
10.8 Erodable dam overtopping |
|
|
895 | (17) |
|
10.8.1 Motivation and literature review |
|
|
895 | (3) |
|
10.8.2 Experimental program |
|
|
898 | (5) |
|
10.8.3 Experimental results |
|
|
903 | (7) |
|
10.8.4 Discussion of results |
|
|
910 | (2) |
|
10.9 Spatial impulse waves |
|
|
912 | (15) |
|
|
912 | (1) |
|
10.9.2 Experimental setup |
|
|
913 | (3) |
|
10.9.3 Process description |
|
|
916 | (5) |
|
10.9.4 Experimental results |
|
|
921 | (3) |
|
10.9.5 Discussion of results |
|
|
924 | (3) |
|
10.9.6 Relevance for practice |
|
|
927 | (1) |
|
|
927 | (4) |
|
|
931 | (8) |
|
|
939 | (4) |
11 Dam breach |
|
943 | (93) |
|
|
943 | (2) |
|
11.2 Empirical breach data |
|
|
945 | (6) |
|
11.2.1 Breach characteristics and examples |
|
|
945 | (3) |
|
11.2.2 Breach characteristics and temporal breach development |
|
|
948 | (3) |
|
11.3 Progressive 2D breach |
|
|
951 | (29) |
|
|
951 | (2) |
|
11.3.2 Hydraulic modeling |
|
|
953 | (7) |
|
11.3.3 Normalized results |
|
|
960 | (8) |
|
11.3.4 Generalized approach |
|
|
968 | (12) |
|
|
980 | (14) |
|
|
980 | (4) |
|
|
984 | (10) |
|
11.5 Instantaneous 2D breach |
|
|
994 | (27) |
|
11.5.1 De Saint-Venant equations |
|
|
994 | (2) |
|
|
996 | (2) |
|
11.5.3 Dressler's asymptotic solution |
|
|
998 | (1) |
|
11.5.4 Pohle's 2D approach |
|
|
999 | (3) |
|
11.5.5 Hunt's asymptotic solution |
|
|
1002 | (1) |
|
|
1003 | (3) |
|
11.5.7 Experimental approach |
|
|
1006 | (14) |
|
11.5.8 Dam-break waves for silted-up reservoirs |
|
|
1020 | (1) |
|
|
1021 | (3) |
|
|
1024 | (3) |
|
|
1027 | (9) |
Subject Index |
|
1036 | (18) |
Author Index |
|
1054 | |