Atnaujinkite slapukų nuostatas

El. knyga: Hydrogen in Semiconductors II

Series edited by (WILLARDSON CONSULTING SPOKANE, WASHINGTON), Volume editor (Hahn-Meitner-Institut, Berlin, Germany), Series edited by (Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg, Germany)
  • Formatas: PDF+DRM
  • Serija: Semiconductors and Semimetals
  • Išleidimo metai: 05-May-1999
  • Leidėjas: Academic Press Inc
  • Kalba: eng
  • ISBN-13: 9780080525259
  • Formatas: PDF+DRM
  • Serija: Semiconductors and Semimetals
  • Išleidimo metai: 05-May-1999
  • Leidėjas: Academic Press Inc
  • Kalba: eng
  • ISBN-13: 9780080525259

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition will be maintained and even expanded.
Reflecting the truly interdisciplinary nature of the field that the series covers, the volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in modern industry.

Key Features
* Provides the most in-depth coverage of hydrogen in silicon available in a single source
* Includes an extensive chapter on the neutralization of defects in III*b1V semiconductors**Combines both experimental and theoretical studies to form a comprehensive reference

Daugiau informacijos

Key Features * Provides the most in-depth coverage of hydrogen in silicon available in a single source * Includes an extensive chapter on the neutralization of defects in III*b1V semiconductors**Combines both experimental and theoretical studies to form a comprehensive reference
PREFACE xi(2) LIST OF CONTRIBUTORS xiii
Chapter 1 Introduction to Hydrogen in Semiconductors II 1(12) Norbert H. Nickel
Chapter 2 Isolated Monatomic Hydrogen in Silicon 13(12) Noble M. Johnson Chris Van de Walle I. INTRODUCTION 13(1) II. THEORY 14(4)
1. Hydrogen in the Positive Charge State: H^(+) 14(2)
2. Hydrogen in the Neutral Charge State: H^(0) 16(1)
3. Hydrogen in the Negative Charge State: H^(-) 17(1)
4. Relative Stability of Different Charge States and Negative-U Character 17(1) III. EXPERIMENT 18(3)
1. Donor Level 18(2)
2. Acceptor Level 20(1)
3. Equilibrium Densities 21(1) IV. CONCLUSIONS 21(1) REFERENCES 22(3)
Chapter 3 Electron Paramagnetic Resonance Studies of Hydrogen and Hydrogen-Related Defects in Crystalline Silicon 25(58) Yurij V. Gorelkinskii I. INTRODUCTION 25(3) II. INTERSTITIAL (BC) HYDROGEN IN SILICON 28(17)
1. Experimental Procedure 28(1)
2. EPR Spectrum of Bond-Centered Hydrogen 29(8)
3. Stress-Induced Alignment of Bond-Centered Hydrogen 37(5)
4. Thermally Activated Annealing 42(3) III. EPR OF HYDROGEN-RELATED COMPLEXES IN SILICON 45(6)
1. Hydrogen-Intrinsic Defect Complexes 45(2)
2. EPR of Platinum-Hydrogen and Sulphur-Hydrogen Complexes 47(1)
3. ENDOR Spectra of Si--H Bonds at the (111) Si Surface 48(1)
4. ENDOR of Hydrogen in the Oxygen Thermal Donor (NL10) 49(2) IV. HYDROGEN-INDUCED EFFECTS IN SILICON 51(24)
1. Hydrogen-Associated Shallow Donors in Hydrogen-Implanted Silicon 51(8)
2. Stress-Induced Alignment of the AA1 Spectrum 59(6)
3. Neutral Charge State of Hydrogen-Associated Donor 65(4)
4. EPR Evidence of Hydrogen-Enhanced Diffusion of Al in Silicon 69(6) V. SUMMARY AND CONCLUSIONS 75(2) REFERENCES 77(6)
Chapter 4 Hydrogen in Polycrystalline Silicon 83(82) Norbert H. Nickel I. INTRODUCTION 83(2) II. EXPERIMENTAL TECHNIQUES 85(2)
1. Sample Preparation and Characterization 85(1)
2. Hydrogen Passivation 86(1)
3. Characterization 86(1) III. HYDROGEN DIFFUSION 87(23)
1. Hydrogen Diffusion from a Plasma Source 87(11)
2. Hydrogen Diffusion from a Silicon Layer 98(4)
3. Hydrogen Density of States 102(8) IV. HYDROGEN PASSIVATION OF GRAIN-BOUNDARY DEFECTS 110(14) V. METASTABILITY 124(19)
1. Light-Induced Defect Generation 125(7)
2. Metastable Changes in the Electrical Conductivity 132(11) VI. HYDROGEN-INDUCED DEFECTS DURING PLASMA EXPOSURE 143(16)
1. Generation of Acceptor-Like Defects 144(8)
2. Platelets 152(7) VII. SUMMARY AND FUTURE DIRECTIONS 159(2) REFERENCES 161(4)
Chapter 5 Hydrogen Phenomena in Hydrogenated Amorphous Silicon 165(76) Wolfhard Beyer I. INTRODUCTION 165(1) II. MATERIAL CHARACTERIZATION BY HYDROGEN EFFUSION AND INFRARED ABSORPTION 166(16)
1. Measurement Techniques and Material Preparation 166(1)
2. Hydrogen Effusion Data 167(7)
3. Infrared Absorption Data 174(8) III. EXPERIMENTAL HYDROGEN DIFFUSION AND SOLUBILITY DATA 182(17)
1. Hydrogen Diffusion Data 182(10)
2. Hydrogen Solubility Data 192(7) IV. HYDROGEN DIFFUSION AND EFFUSION EFFECTS 199(31)
1. Hydrogen Diffusion Processes 199(7)
2. Hydrogen Density of States Distribution and Hydrogen Chemical Potential 206(6)
3. Temperature Shift of Hydrogen Chemical Potential and Meyer-Neldel Rule of Hydrogen Diffusion 212(5)
4. Time Dependence of Hydrogen Diffusion Coefficient 217(3)
5. Deviations from Error-Function Diffusion Profiles 220(5)
6. Plasma In-Diffusion Versus Layer Diffusion 225(1)
7. Relation Between SIMS Diffusion Data and Hydrogen Effusion Data 226(3)
8. Interrelation Between IR Absorption Spectra and Effusion Transients 229(1) V. HYDROGEN SOLUBILITY EFFECTS 230(5)
1. Solubility in Compact Material 231(3)
2. Hydrogen-Related Void Formation 234(1) VI. CONCLUSIONS 235(1) REFERENCES 236(5)
Chapter 6 Hydrogen Interactions with Polycrystalline and Amorphous Silicon--Theory 241(42) Chris G. Van de Walle I. INTRODUCTION 241(7)
1. Role of Hydrogen in Amorphous and Polycrystalline Silicon 241(1)
2. General Features of Hydrogen in Silicon 242(3)
3. Computational Approaches 245(3) II. HYDROGEN INTERACTIONS WITH AMORPHOUS SILICON 248(23)
1. Hydrogen Motion-Introduction 248(5)
2. Hydrogen Interactions with Dangling Bonds 253(3)
3. Hydrogen Interactions with Overcoordination Defects 256(5)
4. Hydrogen Interactions with Weak Si--Si Bonds 261(1)
5. Simulations of Amorphous Networks 262(2)
6. Hydrogen Diffusion and Metastability-Discussion 264(5)
7. Hydrogen Versus Deuterium for Passivation of Dangling Bonds 269(2) III. HYDROGEN IN POLYCRYSTALLINE SILICON 271(6)
1. Grain Boundaries 271(1)
2. Hydrogen Interactions with Grain Boundaries 272(1)
3. Hydrogen-Induced Generation of Donor-Like Metastable Defects 273(4)
4. Hydrogen-Induced Generation of Acceptor-Like Defects 277(1) IV. CONCLUSIONS AND FUTURE DIRECTIONS 277(1) REFERENCES 278(5)
Chapter 7 Hydrogen in Polycrystalline CVD Diamond 283(28) Karen M. McNamara Rutledge I. INTRODUCTION 283(3) II. SOLID-STATE CHARACTERIZATION TECHNIQUES 286(8)
1. Fourier Transform Spectroscopy 286(2)
2. Nuclear Magnetic Resonance 288(2)
3. Electron Paramagnetic Resonance 290(3)
4. Other Analysis Techniques 293(1) III. RESULTS OF SOLID-STATE ANALYSIS 294(11)
1. Covalent Bonding Environments 294(3)
2. Quantitative Hydrogen Concentrations 297(1)
3. Local Hydrogen Distribution 298(4)
4. Proximity to Paramagnetic Defects 302(2)
5. Macroscopic Hydrogen Distributions 304(1) IV. EFFECTS OF HYDROGEN ON OBSERVED PROPERTIES 305(3)
1. Infrared Transmission 305(1)
2. Thermal Conductivity 306(2) V. SUMMARY 308(1) REFERENCES 309(2)
Chapter 8 Dynamics of Muonium Diffusion, Site Changes and Charge-State Transitions 311(62) Roger L. Lichti I. INTRODUCTION 311(5) II. EXPERIMENTAL TECHNIQUES 316(12)
1. Transverse-Field Methods 318(1)
2. Longitudinal-Field Methods 319(9) III. IDENTIFICATION AND CHARACTERIZATION OF MUONIUM STATES 328(13)
1. Neutral Paramagnetic Centers 329(5)
2. Charged Diamagnetic Centers 334(7) IV. DYNAMICS OF MUONIUM TRANSITIONS 341(25)
1. Silicon: The Basic Model 342(12)
2. Germanium 354(5)
3. Gallium Arsenide 359(5)
4. Other III-V Materials 364(2) V. RELEVANCE TO HYDROGEN IMPURITIES 366(3) REFERENCES 369(4)
Chapter 9 Hydrogen in III-V and II-VI Semiconductors 373(68) Matthew D. McCluskey Eugene E. Haller I. INTRODUCTION 373(3) II. HYDROGEN IN III-V SEMICONDUCTORS 376(50)
1. Hydrogen in GaAs 376(14)
2. Hydrogen in AlAs 390(6)
3. Hydrogen in InP 396(6)
4. Hydrogen in GaP 402(10)
5. Hydrogen in AlSb 412(10)
6. Hydrogen in GaN 422(4)
7. Hydrogen in Other III-V Semiconductors 426(1) III. HYDROGEN IN II-VI SEMICONDUCTORS 426(8)
1. Hydrogen in ZnSe 426(7)
2. Hydrogen in CdTe 433(1) IV. SUMMARY AND FUTURE DISCUSSION 434(2) REFERENCES 436(5)
Chapter 10 The Properties of Hydrogen in GaN and Related Alloys 441(38) S. J. Pearton J. W. Lee I. INTRODUCTION 441(1) II. HYDROGEN IN AS-GROWN NITRIDES 442(8)
1. Doped Material 442(3)
2. Sources of Hydrogen 445(1)
3. Diffusion 446(4) III. DOPANT PASSIVATION 450(6)
1. Calcium 451(3)
2. Carbon 454(1)
3. Summary 455(1) IV. DIFFUSION AND REACTIVATION MECHANISM 456(13)
1. Alloys 456(5)
2. In-Containing Nitrides 461(1)
3. Mechanisms 462(4)
4. Heterostructures 466(3) V. ROLE OF HYDROGEN DURING PROCESSING 469(3)
1. Implant Isolation 470(1)
2. Wet Processing 470(1)
3. Deposition and Etching 471(1) VI. THEORY OF HYDROGEN IN NITRIDES 472(4) VII. SUMMARY AND CONCLUSIONS 476(1) REFERENCES 477(2)
Chapter 11 Theory of Hydrogen in GaN 479(24) Jorg Neugebauer Chris G. Van de Walle I. INTRODUCTION 479(2) II. METHOD 481(2)
1. Defect Concentrations and Solubility 481(1)
2. Energetics, Atomic Geometries, and Electronic Structure 482(1) III. MONATOMIC HYDROGEN IN GaN 483(6)
1. Atomic Geometries and Stable Positions 484(2)
2. Migration Path and Diffusion Barriers 486(1)
3. Formation Energies and Negative-U Effect 486(3) IV. HYDROGEN MOLECULES IN GaN 489(1) V. HYDROGEN-ACCEPTOR COMPLEXES IN GaN 489(3)
1. The Mg-H Complex 490(2)
2. Other H-Acceptor Complexes 492(1) VI. COMPLEXES OF H WITH NATIVE DEFECTS 492(3)
1. Hydrogen Interacting with Nitrogen Vacancies 493(1)
2. Hydrogen Interacting with Gallium Vacancies 494(1) VII. ROLE OF HYDROGEN IN DOPING GaN 495(4)
1. Doping in the Absence of Hydrogen 495(2)
2. Doping in the Presence of Hydrogen 497(1)
3. Activation Mechanism of the Dopants 498(1) VIII. GENERAL CRITERIA FOR HYDROGEN TO ENHANCE DOPING 499(1) IX. CONCLUSIONS AND OUTLOOK 500(1) REFERENCES 501(2) INDEX 503(6) CONTENTS OF VOLUMES IN THIS SERIES 509
Prof. Dr. Eicke R. Weber, Fraunhofer-Institut fur Solare Energiesysteme ISE, Freiburg, Germany