Atnaujinkite slapukų nuostatas

El. knyga: Hydrological Modelling and the Water Cycle: Coupling the Atmospheric and Hydrological Models

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formatas: PDF+DRM
  • Serija: Water Science and Technology Library 63
  • Išleidimo metai: 18-Jul-2008
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783540778431
  • Formatas: PDF+DRM
  • Serija: Water Science and Technology Library 63
  • Išleidimo metai: 18-Jul-2008
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783540778431

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This volume is a collection of a selected number of articles based on presentations at the 2005 LAquila (Italy) Summer School on the topic of Hydrologic Modeling and Water Cycle: Coupling of the Atmosphere and Hydrological Models. The p- mary focus of this volume is on hydrologic modeling and their data requirements, especially precipitation. As the eld of hydrologic modeling is experiencing rapid development and transition to application of distributed models, many challenges including overcoming the requirements of compatible observations of inputs and outputs must be addressed. A number of papers address the recent advances in the State-of-the-art distributed precipitation estimation from satellites. A number of articles address the issues related to the data merging and use of geo-statistical techniques for addressing data limitations at spatial resolutions to capture the h- erogeneity of physical processes. The participants at the School came from diverse backgrounds and the level of - terest and active involvement in the discussions clearly demonstrated the importance the scienti c community places on challenges related to the coupling of atmospheric and hydrologic models. Along with my colleagues Dr. Erika Coppola and Dr. Kuolin Hsu, co-directors of the School, we greatly appreciate the invited lectures and all the participants. The members of the local organizing committee, Drs Barbara Tomassetti; Marco Verdecchia and Guido Visconti were instrumental in the success of the school and their contributions, both scienti cally and organizationally are much appreciated.
General Review of Rainfall-Runoff Modeling: Model Calibration, Data Assimilation, and Uncertainty Analysis.- General Review of Rainfall-Runoff Modeling: Model Calibration, Data Assimilation, and Uncertainty Analysis.- Measurement of Hydrologic Variables.- Satellite-Based Precipitation Measurement Using PERSIANN System.- Satellite Clouds and Precipitation Observations for Meteorology and Climate.- Advanced Techniques for Polarimetric Radar Estimation of Rainfall.- Measurements of Hydrological Variables from Satellite: Application to Mediterranean Regions.- Data Merging and Dowscaling.- Geostatistical Tools for Validation of Satellite and NWP Model Rainfall Estimates.- An Ensemble Approach to Uncertainty Estimation for Satellite-Based Rainfall Estimates.- Hydrologic Modelling: Short and Long-Time Scale.- Cetemps Hydrological Model (CHyM), a Distributed Grid-Based Model Assimilating Different Rainfall Data Sources.- Rainfall Thresholds for Flood Warning Systems: A Bayesian Decision Approach.- Watershed Hydrological Modeling: Toward Physically Meaningful Processes Representation.- Simulating Climate Impacts on Water Resources: Experience from the Okavango River, Southern Africa.