Atnaujinkite slapukų nuostatas

El. knyga: Hypergeometric Functions Over Finite Fields

Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

"Building on the developments of many people including Evans, Greene, Katz, McCarthy, Ono, Roberts, and Rodriguez-Villegas, we consider period functions for hypergeometric type algebraic varieties over finite fields and consequently study hypergeometric functions over finite fields in a manner that is parallel to that of the classical hypergeometric functions. Using a comparison between the classical gamma function and its finite field analogue the Gauss sum, we give a systematic way to obtain certain types of hypergeometric transformation and evaluation formulas over finite fields and interpret them geometrically using a Galois representation perspective. As an application, we obtain a few finite field analogues of algebraic hypergeometric identities, quadratic and higher transformation formulas, and evaluation formulas. We further apply these finite field formulas to compute the number of rational points of certain hypergeometric varieties"--

Fuselier and colleagues consider period functions for hypergeometric type algebraic varieties over finite fields and, consequently, study hypergeometric functions over finite fields in a manner that is parallel to that of the classical hypergeometric functions. Using a comparison between the classical gamma function and its finite-field analog, the Gauss sum, they describe a systematic way to obtain certain types of hypergeometric transformation and evaluation formulae over finite fields, and interpret them geometrically using a Galois representation perspective. For applications, they obtain a few finite field analogues of algebraic hypergeometric identities, quadratic and higher transformation formulae, and evaluation formulae. They also apply these finite field formulae to compute the number of rational points of certain hypergeometric varieties. Annotation ©2022 Ringgold, Inc., Portland, OR (protoview.com)
Jenny Fuselier, High Point University, North Carolina.

Ling Long, Louisiana State University, Baton Rouge, Louisiana.

Ravi Ramakrishna, Cornell University, Ithaca, New York.

Holly Swisher, Oregon State University, Corvallis, Oregon.

Fang-Ting Tu, Louisiana State University, Baton Rouge, Louisiana.