Atnaujinkite slapukų nuostatas

El. knyga: Hyperspectral Image Fusion

  • Formatas: PDF+DRM
  • Išleidimo metai: 25-May-2013
  • Leidėjas: Springer-Verlag New York Inc.
  • Kalba: eng
  • ISBN-13: 9781461474708
  • Formatas: PDF+DRM
  • Išleidimo metai: 25-May-2013
  • Leidėjas: Springer-Verlag New York Inc.
  • Kalba: eng
  • ISBN-13: 9781461474708

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Hyperspectral Image Fusion is the first text dedicated to the fusion techniques for such a huge volume of data consisting of a very large number of images. This monograph brings out recent advances in the research in the area of visualization of hyperspectral data. It provides a set of pixel-based fusion techniques, each of which is based on a different framework and has its own advantages and disadvantages. The techniques are presented with complete details so that practitioners can easily implement them.

It is also demonstrated how one can select only a few specific bands to speed up the process of fusion by exploiting spatial correlation within successive bands of the hyperspectral data. While the techniques for fusion of hyperspectral images are being developed, it is also important to establish a framework for objective assessment of such techniques. This monograph has a dedicated chapter describing various fusion performance measures that are applicable to hyperspectral image fusion. This monograph also presents a notion of consistency of a fusion technique which can be used to verify the suitability and applicability of a technique for fusion of a very large number of images.

This book will be a highly useful resource to the students, researchers, academicians and practitioners in the specific area of hyperspectral image fusion, as well as generic image fusion.
1 Introduction
1(18)
1.1 Spectral Imaging
3(9)
1.2 Hyperspectral Image Visualization
12(1)
1.3 Tour of the Book
13(6)
2 Current State of the Art
19(22)
2.1 Introduction
19(14)
2.1.1 Classification of Fusion Techniques
21(2)
2.1.2 Pixel-Level Fusion Techniques
23(10)
2.2 Hyperspectral Image Fusion
33(3)
2.3 Quantitative Evaluation of Fusion Techniques
36(3)
2.4 Notations Related to Hyperspectral Image
39(2)
3 Edge-Preserving Solution
41(16)
3.1 Introduction
41(1)
3.2 Edge-Preserving Filters
42(1)
3.3 Basics of Bilateral Filter
43(3)
3.4 Bilateral Filtering-Based Image Fusion
46(3)
3.5 Hierarchical Implementation
49(2)
3.6 Implementation
51(1)
3.7 Experimental Results
52(3)
3.8 Summary
55(2)
4 Band Selection Through Redundancy Elimination
57(16)
4.1 Introduction
57(1)
4.2 Entropy-Based Band Selection
58(2)
4.2.1 Redundancy Elimination
59(1)
4.3 Special Case: Ordered Data
60(4)
4.3.1 Computational Savings
61(3)
4.4 Experimental Results
64(7)
4.5 Summary
71(2)
5 Bayesian Estimation
73(18)
5.1 Introduction
73(1)
5.2 Bayesian Framework
74(3)
5.3 Model of Image Formation
77(1)
5.4 Computation of Model Parameters
78(5)
5.5 Bayesian Solution
83(3)
5.6 Implementation
86(1)
5.7 Experimental Results
87(2)
5.8 Summary
89(2)
6 Variational Solution
91(10)
6.1 Introduction
91(1)
6.2 Calculus of Variations
92(2)
6.3 Variational Solution
94(3)
6.4 Implementation
97(1)
6.5 Experimental Results
97(2)
6.6 Summary
99(2)
7 Optimization-Based Fusion
101(16)
7.1 Introduction
101(1)
7.2 Image Quality
102(3)
7.3 Optimization-Based Solution to Fusion
105(7)
7.3.1 Formulation of Objective Function
105(4)
7.3.2 Variational Solution
109(3)
7.4 Implementation
112(1)
7.5 Experimental Results
113(2)
7.6 Summary
115(2)
8 Band Selection: Revisited
117(10)
8.1 Introduction
117(1)
8.2 Output-Based Band Selection
118(2)
8.3 Experimental Results
120(6)
8.4 Summary
126(1)
9 Performance Assessment of Fusion Techniques
127(24)
9.1 Introduction
127(1)
9.2 Consistency of a Fusion Technique
128(2)
9.3 Performance and Consistency Analysis
130(10)
9.3.1 No Reference Quality Measures
132(1)
9.3.2 Performance Measures with an Asymptotic Reference
133(3)
9.3.3 Participatory Performance Measures
136(4)
9.4 Experimental Evaluation
140(9)
9.5 Summary
149(2)
10 Results and Discussions
151(22)
10.1 Introduction
151(1)
10.2 Description of Hyperspectral Datasets
152(1)
10.3 Results of Fusion
153(18)
10.4 Remarks
171(2)
11 Conclusions and Directions for Future Research
173(6)
11.1 Introduction
173(1)
11.2 Conclusions
173(4)
11.3 Future Directions
177(2)
References 179(10)
Index 189