Atnaujinkite slapukų nuostatas

El. knyga: Ibn al-Haytham and Analytical Mathematics: A History of Arabic Sciences and Mathematics Volume 2

(Centre National de la Recherche Scientifique (CNRS) in Paris, France)

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This volume provides a unique primary source on the history and philosophy of mathematics and the exact sciences from the mediaeval Arab world. It also includes extensive commentary from one of the world’s foremost authorities in the field of Arabic sciences and philosophy, the eminent scholar Roshdi Rashed, who illuminates the various historical, textual and epistemic threads that underpinned the history of Arabic mathematical and scientific knowledge up to the seventeenth century.



This volume provides a unique primary source on the history and philosophy of mathematics and the exact sciences in the mediaeval Arab world. The second of five comprehensive volumes, this book offers a detailed exploration of Arabic mathematics in the eleventh century as embodied in the legacy of the celebrated polymath al-Hasan ibn al-Haytham.

Extensive analyses and annotations from the eminent scholar, Roshdi Rashed, support a number of key Arabic texts from Ibn al-Haytham’s treatises in infinitesimal mathematics, translated here into English for the first time. Rashed shows how Ibn al-Haytham’s works demonstrate a remarkable mathematical competence in mathematical subjects like the quadrature of the circle and of lunes, the calculation of the volumes of paraboloids, the problem of isoperimetric plane figures and solid figures with equal surface areas, along with the extraction of square and cubic roots.

The present text is complemented by the first volume of A History of Arabic Sciences and Mathematics, which focused on founding figures and commentators in the ninth and tenth centuries Archimedean-Apollonian mathematical ‘School of Baghdad’. This constellation of works illustrates the historical and epistemological development of ‘infinitesimal mathematics’ as it became clearly articulated in the oeuvre of Ibn al-Haytham.

Contributing to a more informed and balanced understanding of the internal currents of the history of mathematics and the exact sciences in Islam, and of its adaptive interpretation and assimilation in the European context, this fundamental text will appeal to historians of ideas, epistemologists and mathematicians at the most advanced levels of research.

CONTENTS

Preface
.............................................................................
........ xi

Note
.............................................................................
.......... xiii

INTRODUCTION: IBN AL-HAYTHAM AND HIS WORK ON INFINITESIMAL

MATHEMATICS

1. Ibn al-Haytham: from Basra to Cairo
.............................................. 1

2. Al-Īasan ibn al-Īasan and MuĢammad ibn al-Īasan:

mathematician and philosopher
......................................................... 11

3. The works of al-Īasan ibn al-Haytham on infinitesimal mathematics
......... 25

CHAPTER I: THE QUADRATURE OF LUNES AND CIRCLES

1.1. INTRODUCTION
....................................................................... 39

1.2. MATHEMATICAL COMMENTARY ................................................
42

1.2.1. Treatise on lunes
................................................................. 42

1.2.2. Treatise on the quadrature of the circle
........................................ 46

1.2.3. Exhaustive treatise on the figures of lunes
.................................... 49

1.3. TRANSLATED TEXTS

1.3.1. Treatise on Lunes
............................................................... 93

1.3.2. Treatise on the Quadrature of the Circle
.................................... 99

1.3.3. Exhaustive Treatise on the Figures of Lunes
.............................. 107

CHAPTER II: CALCULATION OF VOLUMES OF PARABOLOIDS AND SPHERES

AND THE EXHAUSTION METHOD

2.1. INTRODUCTION
....................................................................... 143

2.2. MATHEMATICAL COMMENTARY ................................................
144

2.2.1. Calculation of volumes of paraboloids
........................................ 144

2.2.2.1. Arithmetical lemmas
................................................... 144

2.2.2.2. Volume of a paraboloid of revolution
................................ 151

2.2.2.3. The volume of the second species of paraboloid ...................
160

2.2.2.4. Study of surrounding solids
.......................................... 164

2.2.3. Calculation of the volume of a sphere
......................................... 168

2.3. TRANSLATED TEXTS:

2.3.1. On the Measurement of the Paraboloid
...................................... 177

2.3.2. On the Measurement of the Sphere
.......................................... 221

2.3.3. On the Division of Two Different Magnitudes as Mentioned

in the First Proposition of the Tenth Book of Euclids Elements
.............. 235

CHAPTER III: THE PROBLEMS OF ISOPERIMETRIC AND ISEPIPHANIC

FIGURES AND THE STUDY OF THE SOLID ANGLE

3.1. INTRODUCTION
....................................................................... 239

3.2. MATHEMATICAL COMMENTARY ................................................
242

x CONTENTS

3.3. TRANSLATED TEXT: On the Sphere which is the Largest of all the Solid

Figures having Equal Perimeters and On the Circle which is the Largest

of all the Plane Figures having Equal Perimeters
...................................... 305

APPENDIX: THE APPROXIMATION OF ROOTS

4.1. MATHEMATICAL COMMENTARY ................................................
343

4.2. TRANSLATED TEXTS

4.3.1. On the Cause of the Square Root, its Doubling and its Displacement ...
351

4.3.2. On the Extraction of the Side of a Cube
........................................ 357

SUPPLEMENTARY NOTES

1. On the Arithmetic of Transactions
................................................ 361

2. The Configuration of the Universe: a Book by al-Īasan ibn al-Haytham ? .
362

3. Ibn Sinęn and Ibn al-Haytham on the subject of shadow lines
................ 377

4. Commentary in the Resolution of Doubts by Ibn al-Haytham on

Proposition X.1 of the Elements
...................................................... 381

5. List of Ibn al-Haythams works
.................................................... 391

BIBLIOGRAPHY
.............................................................................
429

INDEXES

Index of names
...........................................................................
439

Subject index
.............................................................................


Index of works .........................................................
Roshdi Rashed is one of the most eminent authorities on Arabic mathematics and the exact sciences. A historian and philosopher of mathematics and science and a highly celebrated epistemologist, he is currently Emeritus Research Director (distinguished class) at the Centre National de la Recherche Scientifique (CNRS) in Paris, and is the former Director of the Centre for History of Arabic and Medieval Science and Philosophy at the University of Paris (Denis Diderot, Paris VII). He also holds an Honorary Professorship at the University of Tokyo and an Emeritus Professorship at the University of Mansourah in Egypt.