Atnaujinkite slapukų nuostatas

El. knyga: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra

4.41/5 (67 ratings by Goodreads)
Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Algebraic Geometry is the study of systems of polynomial equations in one or more variables, asking such questions as: Does the system have finitely many solutions, and if so how can one find them? And if there are infinitely many solutions, how can they be described and manipulated? The solutions of a system of polynomial equations form a geometric object called a variety; the corresponding algebraic object is an ideal. There is a close relationship between ideals and varieties which reveals the intimate link between algebra and geometry. Written at a level appropriate to undergraduates, this book covers such topics as the Hilbert Basis Theorem, the Nullstellensatz, invariant theory, projective geometry, and dimension theory. The algorithms to answer questions such as those posed above are an important part of algebraic geometry. Although the algorithmic roots of algebraic geometry are old, it is only in the last forty years that computational methods have regained their earlier prominence. New algorithms, coupled with the power of fast computers, have led to both theoretical advances and interesting applications, for example in robotics and in geometric theorem proving. In addition to enhancing the text of the second edition, with over 200 pages reflecting changes to enhance clarity and correctness, this third edition of Ideals, Varieties and Algorithms includes: A significantly updated section on Maple in Appendix C; Updated information on AXIOM, CoCoA, Macaulay 2, Magma, Mathematica and SINGULAR; A shorter proof of the Extension Theorem presented in Section 6 of Chapter 3.From the 2nd Edition:"I consider the book to be wonderful. ... The exposition is very clear, there are many helpful pictures, and there are a great many instructive exercises, some quite challenging ... offers the heart and soul of modern commutative and algebraic geometry." -The American Mathematical Monthly

Ideals, Varieties, and Algorithms introduces the reader to some interesting ideas in algebraic geometry and commutative algebra. Written at a level appropriate to undergraduates, this book covers such topics as the Hilbert Basis Theorem, the Nullstellensatz, invariant theory, projective geometry, and dimension theory. In addition to enhancing the text of the second edition, with over 200 pages reflecting changes to enhance clarity and correctness, this third edition includes a significantly updated section on Maple in Appendix C. Other highlights include updated information on AXIOM, CoCoA, Macaulay 2, Magma, Mathematica and SINGULAR and a shorter proof of the Extension Theorem presented in Section 6 of Chapter 3.

Recenzijos

From the reviews of the third edition: "The book gives an introduction to Buchberger's algorithm with applications to syzygies, Hilbert polynomials, primary decompositions. There is an introduction to classical algebraic geometry with applications to the ideal membership problem, solving polynomial equations, and elimination theory. ... The book is well-written. ... The reviewer is sure that it will be a excellent guide to introduce further undergraduates in the algorithmic aspect of commutative algebra and algebraic geometry." (Peter Schenzel, Zentralblatt MATH, Vol. 1118 (20), 2007)

Preface to the First Edition   vii  
Preface to the Second Edition   ix  
Preface to the Third Edition   xi  
1. Geometry, Algebra, and Algorithms   1  
  §1. Polynomials and Affine Space
  1  
  §2. Affine Varieties
  5  
  §3. Parametrizations of Affine Varieties
  14  
  §4. Ideals
  29  
  §5. Polynomials of One Variable
  38  
2. Groebner Bases   49  
  §1. Introduction
  49  
  §2. Orderings on the Monomials in k[ x1,...,xn]
  54  
  §3. A Division Algorithm in k[ xi,...,xn]
  61  
  §4. Monomial Ideals and Dickson's Lemma
  69  
  §5. The Hilbert Basis Theorem and Groebner Bases
  75  
  §6. Properties of Groebner Bases
  82  
  §7. Buchberger's Algorithm
  88  
  §8. First Applications of Groebner Bases
  95  
  §9. (Optional) Improvements on Buchberger's Algorithm
  102  
3. Elimination Theory   115  
  §1. The Elimination and Extension Theorems
  115  
  §2. The Geometry of Elimination
  123  
  §3. Implicitization
  128  
  §4. Singular Points and Envelopes
  137  
  §5. Unique Factorization and Resultants
  150  
  §6. Resultants and the Extension Theorem
  162  
4. The Algebra-Geometry Dictionary   169  
  §1. Hilbert's Nullstellensatz
  169  
  §2. Radical Ideals and the Ideal-Variety Correspondence
  175  
  §3. Sums, Products, and Intersections of Ideals
  183  
  §4. Zariski Closure and Quotients of Ideals
  193  
  §5. Irreducible Varieties and Prime Ideals
  198  
  §6. Decomposition of a Variety into Irreducibles
  204  
  §7. (Optional) Primary Decomposition of Ideals
  210  
  §8. Summary
  214  
5. Polynomial and Rational Functions on a Variety   215  
  §1. Polynomial Mappings
  215  
  §2. Quotients of Polynomial Rings
  221  
  §3. Algorithmic Computations in kk[ xi,...,xn]/I
  230  
  §4. The Coordinate Ring of an Affine Variety
  239  
  §5. Rational Functions on a Variety
  248  
  §6. (Optional) Proof of the Closure Theorem
  258  
6. Robotics and Automatic Geometric Theorem Proving   265  
  §1. Geometric Description of Robots
  265  
  §2. The Forward Kinematic Problem
  271  
  §3. The Inverse Kinematic Problem and Motion Planning
  279  
  §4. Automatic Geometric Theorem Proving
  291  
  §5. Wu's Method
  307  
7. Invariant Theory of Finite Groups   317  
  §1. Symmetric Polynomials
  317  
  §2. Finite Matrix Groups and Rings of Invariants
  327  
  §3. Generators for the Ring of Invariants
  336  
  §4. Relations Among Generators and the Geometry of Orbits
  345  
8. Projective Algebraic Geometry   357  
  §1. The Projective Plane
  357  
  §2. Projective Space and Projective Varieties
  368  
  §3. The Projective Algebra-Geometry Dictionary
  379  
  §4. The Projective Closure of an Affine Variety
  386  
  §5. Projective Elimination Theory
  393  
  §6. The Geometry of Quadric Hypersurfaces
  408  
  §7. Bezout's Theorem
  422  
9. The Dimension of a Variety   439  
  §1. The Variety of a Monomial Ideal
  439  
  §2. The Complement of a Monomial Ideal
  443  
  §3. The Hilbert Function and the Dimension of a Variety
  456  
  §4. Elementary Properties of Dimension
  468  
  §5. Dimension and Algebraic Independence
  477  
  §6. Dimension and Nonsingularity
  484  
  §7. The Tangent Cone
  495  
Appendix A. Some Concepts from Algebra   509  
  §1. Fields and Rings
  509  
  §2. Groups
  510  
  §3. Determinants
  511  
Appendix B. Pseudocode   513  
  §1. Inputs, Outputs, Variables, and Constants
  513  
  §2. Assignment Statements
  514  
  §3. Looping Structures
  514  
  §4. Branching Structures
  515  
Appendix C. Computer Algebra Systems   517  
  §1. AXIOM
  517  
  §2. Maple
  520  
  §3. Mathematica
  522  
  §4. REDUCE
  524  
  §5. Other Systems
  528  
Appendix D. Independent Projects   530  
  §1. General Comments
  530  
  §2. Suggested Projects
  530  
References   535  
Index   541