Atnaujinkite slapukų nuostatas

Identification of Defects in Semiconductors, Volume 51A [Kietas viršelis]

Volume editor (Lehigh University, Bethlehem, Pennsylvania), Series edited by (Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg, Germany), Series edited by (WILLARDSON CONSULTING SPOKANE, WASHINGTON)
  • Formatas: Hardback, 376 pages, aukštis x plotis: 229x152 mm, weight: 800 g
  • Serija: Semiconductors and Semimetals
  • Išleidimo metai: 02-Jul-1998
  • Leidėjas: Academic Press Inc
  • ISBN-10: 0127521593
  • ISBN-13: 9780127521596
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 376 pages, aukštis x plotis: 229x152 mm, weight: 800 g
  • Serija: Semiconductors and Semimetals
  • Išleidimo metai: 02-Jul-1998
  • Leidėjas: Academic Press Inc
  • ISBN-10: 0127521593
  • ISBN-13: 9780127521596
Kitos knygos pagal šią temą:
Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors.The"Willardson and Beer"Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices,Oxygen in Silicon, and others promise indeed that this tradition will be maintained and even expanded.Reflecting the truly interdisciplinary nature of the field that the series covers, the volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in modern industry.
PREFACE ix(4) LIST OF CONTRIBUTORS xiii
Chapter 1 EPR and ENDOR Studies of Defects in Semiconductors 1(44) George D. Watkins I. Introduction 1(2) II. The EPR/ENDOR Experiment 3(1) III. Theory of EPR and ENDOR 4(12)
1. The g-Tensor 4(3)
2. Hyperfine Interactions 7(5)
3. ENDOR 12(1)
4. Fine-Structure Terms for S is greater than 1/2 13(2)
5. Summary 15(1) IV. Additional Examples 16(12)
1. Defects in Irradiated Silicon 16(8)
2. Intrinsic Defects in Wide-Bandgap Semiconductors 24(3)
3. Transition Element Impurities 27(1) V. Auxiliary Techniques 28(13)
1. Applied Uniaxial Stress 29(6)
2. Optical Illumination In Situ 35(2)
3. Effect of Temperature 37(2)
4. Defect Production 39(2) References 41(4)
Chapter 2 Magneto-Optical and Electrical Detection of Paramagnetic Resonance in Semiconductors 45(48) J.M. Spaeth I. Introduction 45(3) II. Magneto-Optical Detection of EPR and ENDOR 48(25)
1. EPR Detected with Magnetic Circular Dichroism of Absorption (MCDA) 48(5)
2. Examples for MCDA-detected EPR 53(8)
3. MCDA Excitation Spectra of ODEPR Lines (MCDA Tagged by EPR) 61(5)
4. Spatially Resolved MCDA and ODEPR Spectra 66(2)
5. Determination of the Spin State with the MCDA Method 68(2)
6. ENDOR Detected with the MCDA Method 70(3) III. Electrical Detection of EPR (EDEPR) 73(11)
1. Experimental Observation of EDEPR 73(5)
2. The Donor-Acceptor Recombination Model 78(4)
3. Concentration and Temperature Dependence of EDEPR Signals 82(2) IV. Electrical Detection of ENDOR (EDENDOR) 84(2) V. New Possibilities 86(4) VI. References 90(3)
Chapter 3 Magnetic Resonance of Epitaxial Layers Detected by Photoluminescence 93(45) T.A. Kennedy E.R. Glaser I. Introduction 93(1) II. Fundamentals of ODMR and Epitaxy 94(10)
1. ODMR Detected on Photoluminescence 94(7)
2. Epitaxy 101(3) III. Illustrative Example: Bulk InP: Zn 104(9)
1. Introduction 104(1)
2. ODMR of the Effective-Mass Donor 105(1)
3. ODMR of P(In) 106(4)
4. ODMR of the Effective-Mass Acceptor 110(2)
5. Conclusion 112(1) IV. Examples in Epilayers 113(20)
1. Effective-Mass Donors 113(9)
2. Deep Centers 122(7)
3. Acceptors 129(4) V. Summary and Future Directions 133(1) References 134(4)
Chapter 4 MuSR on Muonium in Semiconductors and Its Relation to Hydrogen 138(72) K.H. Chow B. Hitti R.F. Kiefl I. Introduction 138(5) II. Fundamentals of MuSR in Semiconductors 143(12)
1. Production and Decay of Spin-Polarized Muons 144(1)
2. Calculation of the Muon Spin Polarization Function P(t) 145(7)
3. Effective-Field Approximation 152(1)
4. Influence of Nuclear Spins 153(2) III. Experimental Techniques and Examples 155(47)
1. Muon Spin Rotation in a Transverse Magnetic Field (TF-MuSR) 157(10)
2. Muon Level-Crossing Resonance (MuLCR) 167(9)
3. Zero-Field Muon Spin Relaxation/Rotation (ZE-MuSR) 176(4)
4. Muon Spin Relaxation in a Longitudinal Magnetic Field (LF-MuSR) 180(13)
5. Muon Spin Resonance in an RF Magnetic Field (RF-MuSR) 193(8)
6. Comparison of Techniques and Facilities 201(1) IV. Summary 202(2) References 204(6)
Chapter 5 Positron Annihilation Spectroscopy of Defects in Semiconductors 210(78) Kimmo Saarinen Pekka Hautojarvi Catherine Corbel I. Introduction 210(1) II. Positrons in Solids 211(7)
1. Positrons for Bulk Studies 212(1)
2. Positrons for Layer Studies 213(2)
3. Positron Diffusion and Mobility 213(2)
4. Positron Wave Function and Positron States 215(1)
5. Annihilation Characteristics 216(2) III. Positrons Trapping 218(4)
1. Trapping Rate and Trapping Coefficient 218(2)
2. Kinetic Trapping Model 220(2) IV. Experimental Techniques 222(10)
1. Positron Lifetime Spectroscopy 222(3)
2. Angular Correlation Spectroscopy 225(2)
3. Doppler Broadening Spectroscopy 227(5) V. Identification of Vacancies and Their Charge States 232(11)
1. Open Volume and Positron Lifetime 232(3)
2. Vacancy Charge State: Ga Vacancy in GaAs 235(4)
3. Identification of Vacancy Sublattice and Impurity Surroundings 239(4) VI. Negative Ions as Shallow Positron Traps 243(7)
1. Native Defects in As-grown GaAs as Negative Ions 244(2)
2. Negative Vacancies and Negative Ions in Electron-Irradiated GaAs 246(4) VII. Defects in Layers Studied by a Low-Energy Positron Beam 250(8)
1. Compensating Defects in Highly Si-doped GaAs Layers 250(4)
2. Analysis of Depth Profiles of Vacancies in Ion-Implanted GaAs 254(4) VIII. Investigation of Vacancy Ionization Levels 258(10)
1. Arsenic Vacancy in n-Type GaAs: Thermal Ionization 258(4)
2. Arsenic Vacancy in SI GaAs: Optical Transitions 262(6) IX. Investigation of the Atomic Structures of Metastable Defects 268(14)
1. As-grown SI GaAs: The Midgap Donor EL2 268(5)
2. Metastability of Defects in SI GaAs After Electron Irradiation 273(2)
3. As-grown n-Type Al(x) Ga(l-x) As Layers: The Deep Donor Level DX 275(4)
4. The Atomic Structure of EL2 and DX 279(3) X. Summary 282(1) References 282(6)
Chapter 6 The Ab Initio Cluster Method and the Dynamics of Defects in Semiconductors 288(63) R. Jones P.R. Briddon I. Introduction 288(2) II. The Many-Body Problem 290(16)
1. The Born-Oppenheimer Approximation 291(1)
2. Hartree-Fock Theory 292(3)
3. The Homogeneous Electron Gas 295(2)
4. The Spin-Polarized Electron Gas 297(3)
5. Density Functional Theory 300(6) III. Pseudopotential Theory 306(4) IV. The Real-Space Cluster Method 310(9)
1. The Hartree Energy 312(2)
2. The Exchange-Correlation Energy 314(3)
3. Matrix Formulation 317(2) V. Self-Consistency and Atomic Forces 319(5)
1. Self-Consistency 319(4)
2. Evaluation of Forces 323(1) VI. Structural Optimization 324(3)
1. Unconstrained Relaxation 324(2)
2. Constrained Relaxation 326(1) VII. Determination of Vibrational Modes 327(5)
1. Energy Second Derivatives and Musgrave-Pople Potentials 327(2)
2. Effective Charges 329(2)
3. Resonant Modes 331(1) VIII. Practical Considerations 332(5)
1. Choice of Basis Sets 332(2)
2. The Construction of a Suitable Cluster 334(2)
3. Mulliken Populations 336(1)
4. Radiative Lifetimes 337(8) IX. Applications 337(8)
1. General 337(1)
2. Point Defects in Bulk Solids 338(5)
3. Line Defects 343(2) X. Summary 345(1) References 346(5) INDEX 351(10) CONTENTS OF VOLUMES IN THIS SERIES 361
Prof. Dr. Eicke R. Weber, Fraunhofer-Institut fur Solare Energiesysteme ISE, Freiburg, Germany