Atnaujinkite slapukų nuostatas

El. knyga: Image Pattern Recognition: Fundamentals and Applications

(KLEF, India), (Icfai Foundation For Higher Education, India), (Koneru Lakshmaiah Education Foundation, India)
  • Formatas: 202 pages
  • Išleidimo metai: 06-Feb-2022
  • Leidėjas: CRC Press
  • Kalba: eng
  • ISBN-13: 9781000460971
  • Formatas: 202 pages
  • Išleidimo metai: 06-Feb-2022
  • Leidėjas: CRC Press
  • Kalba: eng
  • ISBN-13: 9781000460971

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The comprehensive textbook discusses fundamental of data retrieval, image retrieval using extrema patterns in a single volume. It will serve as an ideal study material for senior undergraduate and graduate students in the fields of electrical engineering and electronics and communications engineering.



This book describes various types of image patterns for image retrieval. All these patterns are texture dependent. Few image patterns such as Improved directional local extrema patterns, Local Quantized Extrema Patterns, Local Color Oppugnant Quantized Extrema Patterns and Local Mesh quantized extrema patterns are presented. Inter-relationships among the pixels of an image are used for feature extraction. In contrast to the existing patterns these patterns focus on local neighborhood of pixels to creates the feature vector. Evaluation metrics such as precision and recall are calculated after testing with standard databases i.e., Corel-1k, Corel-5k and MIT VisTex database. This book serves as a practical guide for students and researchers.

-The text introduces two models of Directional local extrema patterns viz.,

  • Integration of color and directional local extrema patterns
  • Integration of Gabor features and directional local extrema patterns.

-Provides a framework to extract the features using quantization method

-Discusses the local quantized extrema collected from two oppugnant color planes

-Illustrates the mesh structure with the pixels at alternate positions.

1. Introduction.
2. Features used for Image Retrieval.
3. Improved Directional Local Extrema Patterns for CBIR.
4. Local Quantized Extrema Patterns.
5. Local Color Oppugnant Quantized Extrema Patterns.
6. Local Mesh Quantized Extrema Patterns.
7. Local Patterns for Feature Extraction.
8. Applications of Image Pattern Recognition.
9. Conclusions and Future Scope.
L Koteswara Rao is currently working as a professor, department of electronics and communication engineering, K L University, Telangana, India. He has more than 18 years of teaching and research experience. He has published more than 30 papers in various reputed national, international journals and conferences. His research interests include image processing, signal processing, embedded systems, and the Internet of Things (IoT).

Md Zia Ur Rahman is presently working as a professor, department of electronics and communication engineering, K L University, Andhra Pradesh, India. His current research interests include adaptive signal processing, biomedical signal processing, medical imaging, array signal processing, MEMS, Nanophotonics. He has published more than 100 research papers in various journals and proceedings and authored 2 books. He is serving in various editorial boards in the capacity of editor in chief, associate editor, reviewer for publishers like IEEE, Elsevier, Springer, American Scientific Publishers, etc.

P Rohini is currently working as an assistant professor, department o computer science engineering, ICFAI University, Hyderabad, India. She has 14 years of teaching experience. Her research interests include image processing, data mining, and deep learning.