Atnaujinkite slapukų nuostatas

El. knyga: Imaging, Vision and Learning Based on Optimization and PDEs: IVLOPDE, Bergen, Norway, August 29 - September 2, 2016

Edited by , Edited by , Edited by
  • Formatas: EPUB+DRM
  • Serija: Mathematics and Visualization
  • Išleidimo metai: 19-Nov-2018
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319912745
  • Formatas: EPUB+DRM
  • Serija: Mathematics and Visualization
  • Išleidimo metai: 19-Nov-2018
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319912745

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This volume presents the peer-reviewed proceedings of the international conference Imaging, Vision and Learning Based on Optimization and PDEs (IVLOPDE), held in Bergen, Norway, in August/September 2016. The contributions cover state-of-the-art research on mathematical techniques for image processing, computer vision and machine learning based on optimization and partial differential equations (PDEs).

It has become an established paradigm to formulate problems within image processing and computer vision as PDEs, variational problems or finite dimensional optimization problems. This compact yet expressive framework makes it possible to incorporate a range of desired properties of the solutions and to design algorithms based on well-founded mathematical theory. A growing body of research has also approached more general problems within data analysis and machine learning from the same perspective, and demonstrated the advantages over earlier, more established algorithms.





This volume will appeal to all mathematicians and computer scientists interested in novel techniques and analytical results for optimization, variational models and PDEs, together with experimental results on applications ranging from early image formation to high-level image and data analysis.
Part I Image Reconstruction from Incomplete Data: 1 Adaptive
Regularization for Image Reconstruction from Subsampled Data: M. Hintermüller
et al.- 2 A Convergent Fixed-Point Proximity Algorithm Accelerated by FISTA
for the l_0 Sparse Recovery Problem: X. Zeng et al.- 3 Sparse-Data Based 3D
Surface Reconstruction for Cartoon and Map: B. Wu et al.- Part II Image
Enhancement, Restoration and Registration: 4 Variational Methods for Gamut
Mapping in Cinema and Television: S. Waqas Zamir et al.- 5 Functional Lifting
for Variational Problems with Higher-Order Regularization: B. Loewenhauser et
al.- 6 On the Convex Model of Speckle Reduction: F. Fang et al.- Part III 3D
Image Understanding and Classification: 7 Multi-Dimensional Regular
Expressions for Object Detection with LiDAR Imaging: T.C. Torgersen et al.- 8
Relaxed Optimisation for Tensor Principal Component Analysis and Applications
to Recognition, Compression and Retrieval of Volumetric Shapes: H. Itoh et
al.- Part IV Machine Learning and Big Data Analysis: 9 An Incremental
Reseeding Strategy for Clustering: X. Bresson et al.- 10 Ego-Motion
Classification for Body-Worn Videos: Z. Meng et al.- 11 Synchronized Recovery
Method for Multi-Rank Symmetric Tensor Decomposition: H. Liu.- Index.