Atnaujinkite slapukų nuostatas

El. knyga: Improving Energy Decisions: Towards Better Scientific Policy Advice for a Safe and Secure Future Energy System

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Managing a successful transition of the current energy supply system to less carbon emitting options, ensuring a safe and secure supply during the whole process and in the long term, is one of the largest challenges of our time. Various approaches and first implementations show that it is not only technological issue, but also a matter of societal acceptance and acceptability, considering basic ethic values of the society.The main foci of the book are, thus, to develop an understanding about the specific challenges of the scientific policy advice in the area, to explore typical current approaches for the analysis of future energy systems and to develop criteria for the quality assessment and guidelines for the improvement of such studies.The book provides assistance to the interpretation of existing studies and guidelines for setting up and carrying out new analyses as well as for communicating and applying the results. Thereby, it aims to support the involved actors such as the

respective scientific experts and researchers as well as decision makers, energy suppliers, stakeholders and the interested public in designing procedures for a successful transition process. The study elaborates consistent interdisciplinary advice as contribution for realising a continuously safe and secure, long-term viable energy supply in spite of diverse interests, multi-level responsibilities, multi-dimensional processes, large uncertainties and lack of knowledge about future developments.

Introduction.- The Framework for Developing Long-Term Viable Energy Systems.- Prospects and Limits of Scientific Policy Advice for Future Energy Systems.- Characterisation of Recent Analyses of the Energy System.- Specific Economic Problems and Uncertainties in the Context of Energy Systems.- Energy System 2050 Impacts of Uncertainties on the Optimal Electricity Generation Mix.- Political Challenges in Managing Transitions of Energy Systems.- Conclusions and Recommendations.
1 Introduction
1(4)
1.1 Background
1(1)
1.2 Aim and Structure of the Study
2(3)
2 Framework for the Development of a Long-Term Viable Energy System
5(30)
2.1 General Aims of Energy Systems
5(2)
2.2 Conceptual Role of Security and Safety for Energy Systems
7(1)
2.3 Robustness as a Basic Aim for Energy System Development
8(6)
2.3.1 Dynamic Stability
9(4)
2.3.2 Social Robustness
13(1)
2.4 Means for Tackling Complex Social Choices
14(19)
2.4.1 Safe and Secure Energy Supply Through System Examination
14(9)
2.4.2 Ethical Decision Support for Energy Transition
23(10)
2.5 Summary and Conclusions
33(2)
3 Prospects and Limits of Scientific Policy Advice for Future Energy Systems
35(34)
3.1 Specific Challenges in Scientific Policy Advice
36(10)
3.1.1 Academic Research and Scientific Expertise
36(2)
3.1.2 Epistemic Values Involved in Expert Advice
38(4)
3.1.3 Non-epistemic Values Involved in Expert Advice
42(4)
3.2 Dealing with Risks, Uncertainty, and Ignorance in Expert Advice
46(6)
3.2.1 Knowledge Deficits in Expert Advice
46(3)
3.2.2 Using Non-epistemic Freedom to Fit Expert Advice to the Purpose
49(3)
3.3 The Social Aspects of the Concept of Risk
52(3)
3.4 Typical Characteristics of Uncertainty and the Precautionary Principle
55(10)
3.4.1 Dimensions of Scientific Uncertainty
55(2)
3.4.2 Post-normal Science
57(2)
3.4.3 The Precautionary Principle
59(6)
3.5 Summary and Conclusions
65(4)
4 Characterisation of Recent Energy System Analyses
69(72)
4.1 Characterisation Schemes for System Analyses
70(13)
4.1.1 From System Correlations to Analyses
70(6)
4.1.2 Derived Tools for Meta-Analysis of Studies
76(7)
4.2 General Coverage and Actors of Currently Existing System Analyses
83(12)
4.2.1 Research Themes
84(1)
4.2.2 Institutions and Disciplines Involved
85(7)
4.2.3 Conclusions
92(3)
4.3 Examples of System Analyses Consulted for Specific Questions
95(43)
4.3.1 Official Scenarios for Analysing Germany's Future Energy System
96(9)
4.3.2 Analyses for Deriving Estimates of Balancing and Energy Storage Requirements
105(26)
4.3.3 Analyses with Regard to Non-technical Parts and Framework Conditions
131(7)
4.4 Summary and Conclusions
138(3)
5 Specific Economic Problems and Uncertainties in the Context of Energy Systems
141(34)
5.1 Some Problems of Sustainable Energy Policy
142(9)
5.2 On Discounting: (Un-)Certainty, Time Trends and Generations
151(7)
5.2.1 Theory of Discounting Under Certainty
151(1)
5.2.2 A Theory of Discounting Under Uncertainty
152(2)
5.2.3 Empirics
154(1)
5.2.4 Policy
155(3)
5.3 Oil Price Trends or Random Walk?
158(8)
5.3.1 The Growth of Oil Prices from a GARCH Perspective
161(2)
5.3.2 Is Two-Way Causality a Way Out? A Vector-Error Correction Perspective
163(3)
5.4 The Impact of the EU-ETS on the Prices of Emission Certificates and Electricity
166(8)
5.4.1 CO2 Cost Pass-Through Under Perfect Competition in Retail Markets
166(1)
5.4.2 CO2 Cost Pass-Through under Imperfect Competition in Retail Markets
167(1)
5.4.3 Capacity and Uncertainty: Profits in the Wholesale Market
168(1)
5.4.4 Empirics: Profit Maximisation and Functional Forms of Price Elasticity Estimates
169(1)
5.4.5 Improving the Empirics of Sluggish Consumer Behaviour
170(1)
5.4.6 The Impact of Carbon Prices on Electricity Prices
171(3)
5.5 Summary and Conclusions
174(1)
6 Energy System 2050: Impacts of Uncertainties on the Optimal Electricity Generation Mix
175(12)
6.1 Focus of the Analysis: Future Electricity Generation
175(2)
6.2 Energy System 2050: Optimal Electricity Generation Mix?
177(9)
6.2.1 Methodology
177(2)
6.2.2 Application Case Study
179(2)
6.2.3 Reference Scenario
181(2)
6.2.4 Sensitivity Analyses
183(3)
6.3 Summary and Conclusions
186(1)
7 Political Challenges in Managing Transitions of Energy Systems Beyond Pure Energy-Economic Modelling
187(20)
7.1 Implications from System Analyses for Governance and Policy Instruments
187(5)
7.1.1 General Considerations
187(2)
7.1.2 Operational Incentives and Co-ordination
189(1)
7.1.3 Investment Incentives and Co-ordination
190(1)
7.1.4 Regulatory Settings and Co-ordination of Expectations
191(1)
7.2 Multi-level Governance and Europe's Energy Transition
192(13)
7.2.1 Energy Transition from a European Perspective
192(10)
7.2.2 The German Energy Transition
202(2)
7.2.3 Challenges to Effective Action
204(1)
7.3 Summary and Conclusions
205(2)
8 Conclusions and Recommendations
207(10)
8.1 Reflections on Improving Scientific Policy Advice for Future Energy Systems
207(5)
8.2 Recommendations
212(5)
8.2.1 General Aims of Scientific Policy Advice
212(1)
8.2.2 Dealing with Uncertainty
213(1)
8.2.3 Practical Implications for the Design of Energy System Studies
214(1)
8.2.4 Beyond Pure Techno-Economic Analyses
215(2)
Appendix A 217(8)
Appendix B 225(2)
Appendix C 227(4)
Glossary 231(6)
References 237(14)
List of Authors 251(4)
Further volumes of the series Ethics of Science and Technology Assessment (Wissenschaftsethik und Technikfolgenbeurteilung) 255