Atnaujinkite slapukų nuostatas

El. knyga: Inductive Logic Programming: 31st International Conference, ILP 2022, Windsor Great Park, UK, September 28-30, 2022, Proceedings

  • Formatas: EPUB+DRM
  • Serija: Lecture Notes in Computer Science 13779
  • Išleidimo metai: 19-Mar-2024
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031556302
  • Formatas: EPUB+DRM
  • Serija: Lecture Notes in Computer Science 13779
  • Išleidimo metai: 19-Mar-2024
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031556302

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book constitutes the refereed proceedings of the 31st International Conference on Inductive Logic Programming, ILP 2022, held during September 28-30, 2022.

The 11 regular papers presented in this book were carefully reviewed and selected from 26 submissions

The papers in these proceedings represent the diversity and vitality in present ILP research, including statistical relational learning, transfer learning, scientific reasoning, learning temporal models, synthesis and planning, and argumentation and language.





 
Learning the Parameters of Probabilistic Answer Set Programs.- Navigable
atom-rule interactions in PSL models enhanced by rule verbalizations, with an
application to etymological inference.- A Program-Synthesis Challenge for
ARC-like Tasks.- Explaining with Attribute-based and Relational Near Misses:
An Interpretable Approach to Distinguishing Facial Expressions of Pain and
Disgust.- Learning Automata-Based Complex Event Patterns in Answer Set
Programming.- Learning Hierarchical Problem Networks for Knowledge-Based
Planning.- Combining word embeddings-based similarity measures for transfer
learning across relational domains.- Learning Assumption-based Argumentation
Frameworks.- Diagnosis of Event Sequences with LFIT.- Efficient Abductive
Learning of Microbial Interactions using Meta Inverse Entailment.- Functional
Lifted Bayesian Networks: Statistical Relational Learning and Reasoning with
Relative Frequencies.