Atnaujinkite slapukų nuostatas

El. knyga: Industrial Control Systems: Mathematical and Statistical Models and Techniques

(Air Force Institute of Technology, Dayton, Ohio, USA), (3M Company, St. Paul, Minnesota, USA),

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Issues such as logistics, the coordination of different teams, and automatic control of machinery become more difficult when dealing with large, complex projects. Yet all these activities have common elements and can be represented by mathematics. Linking theory to practice, Industrial Control Systems: Mathematical and Statistical Models and Techniques presents the mathematical foundation for building and implementing industrial control systems. The book contains mathematically rigorous models and techniques generally applicable to control systems with specific orientation toward industrial systems.

An amalgamation of theoretical developments, applied formulations, implementation processes, and statistical control, the book covers:











Industrial innovations and systems analysis Systems fundamentals Technical systems Production systems Systems filtering theory Systems control Linear and nonlinear systems Switching in systems Systems communication Transfer systems Statistical experimental design models (factorial design and fractional factorial design) Response surface models (central composite design and BoxBehnken design)

Examining system fundamentals and advanced topics, the book includes examples that demonstrate how to use the statistical designs to develop feedback controllers and minimum variance controller designs for industrial applications. Clearly detailing concepts and step-by-step procedures, it matches mathematics with practical applications, giving you the tools to achieve system control goals.
Mathematical Modeling for Product Design. Dynamic Fuzzy Systems
Modeling. Stochastic Systems Modeling. Systems Optimization Techniques.
Statistical Control Techniques. Design of Experiment Techniques. Risk
Analysis and Estimation Techniques. Mathematical Modeling and Control of
Multi-Constrained Projects. On-Line Support Vector Regression with Varying
Parameters for Time-Dependent Data. Appendix: Mathematical and Engineering
References.
Adedeji B. Badiru, Oye Ibidapo-Obe, Babatunde J. Ayeni