Atnaujinkite slapukų nuostatas

Infinite Dimensional Algebras and Quantum Integrable Systems 2005 ed. [Kietas viršelis]

Edited by , Edited by , Edited by
  • Formatas: Hardback, 263 pages, aukštis x plotis: 235x155 mm, weight: 576 g, VIII, 263 p., 1 Hardback
  • Serija: Progress in Mathematics 237
  • Išleidimo metai: 20-Apr-2005
  • Leidėjas: Birkhauser Verlag AG
  • ISBN-10: 376437215X
  • ISBN-13: 9783764372156
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 263 pages, aukštis x plotis: 235x155 mm, weight: 576 g, VIII, 263 p., 1 Hardback
  • Serija: Progress in Mathematics 237
  • Išleidimo metai: 20-Apr-2005
  • Leidėjas: Birkhauser Verlag AG
  • ISBN-10: 376437215X
  • ISBN-13: 9783764372156
Kitos knygos pagal šią temą:

This volume presents the invited lectures of the workshop "Infinite Dimensional Algebras and Quantum Integrable Systems" held in July 2003 at the University of Algarve, Faro, Portugal, as a satellite workshop of the XIV International Congress on Mathematical Physics. In it, recent developments in the theory of infinite dimensional algebras, and their applications to quantum integrable systems, are reviewed by leading experts in the field.



This volume presents the invited lectures of the workshop "Infinite Dimensional Algebras and Quantum Integrable Systems" held in July 2003 at the University of Algarve, Faro, Portugal, as a satellite workshop of the XIV International Congress on Mathematical Physics. In it, recent developments in the theory of infinite dimensional algebras, and their applications to quantum integrable systems, are reviewed by leading experts in the field.
Gaudin Model and Opers.- Integrable Models with Unstable Particles.-
Quantum Reduction in the Twisted Case.- Representation Theory and Quantum
Integrability.- Connecting Lattice and Relativistic Models via Conformal
Field Theory.- Elliptic Spectral Parameter and Infinite-Dimensional Grassmann
Variety.- Trigonometric Degeneration and Orbifold Wess-Zumino-Witten Model.
II.- Weil-Petersson Geometry of the Universal Teichmüller Space.- Duality for
Knizhinik-Zamolodchikov and Dynamical Equations, and Hypergeometric Integrals.