Atnaujinkite slapukų nuostatas

El. knyga: Information Retrieval Technology: 12th Asia Information Retrieval Societies Conference, AIRS 2016, Beijing, China, November 30 - December 2, 2016, Proceedings

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formatas: EPUB+DRM
  • Serija: Lecture Notes in Computer Science 9994
  • Išleidimo metai: 25-Nov-2016
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319480510
  • Formatas: EPUB+DRM
  • Serija: Lecture Notes in Computer Science 9994
  • Išleidimo metai: 25-Nov-2016
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319480510

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book constitutes the refereed proceedings of the 12th Information Retrieval Societies Conference, AIRS 2016, held in Beijing, China, in November/December 2016.The 21 full papers presented together with 11 short papers were carefully reviewed and selected from 57 submissions. The final programme of AIRS 2015 is divided in the following tracks: IR models and theories; machine learning and data mining for IR; IR applications and user modeling; personalization and recommendation; and IR evaluation.

IR models and theories.- Machine learning and data mining for IR.- IR applications and user modeling.- Personalization and recommendation.- IR evaluation.
IR Models and Theories
Modeling Relevance as a Function of Retrieval Rank
3(13)
Xiaolu Lu
Alistair Moffat
J. Shane Culpepper
The Effect of Score Standardisation on Topic Set Size Design
16(13)
Tetsuya Sakai
Incorporating Semantic Knowledge into Latent Matching Model in Search
29(13)
Shuxin Wang
Xin Jiang
Hang Li
Jun Xu
Bin Wang
Keyqueries for Clustering and Labeling
42(14)
Tim Gollub
Matthias Busse
Benno Stein
Matthias Hagen
A Comparative Study of Answer-Contained Snippets and Traditional Snippets
56(12)
Xian-Ling Mao
Dan Wang
Yi-Jing Hao
Wenqing Yuan
Heyan Huang
Local Community Detection via Edge Weighting
68(15)
Weiji Zhao
Fengbin Zhang
Jinglian Liu
Machine Learning and Data Mining for IR
Learning a Semantic Space of Web Search via Session Data
83(15)
Lidong Bing
Zheng-Yu Niu
Wai Lam
Haifeng Wang
TLINE: Scalable Transductive Network Embedding
98(13)
Xia Zhang
Weizheng Chen
Hongfei Yan
Detecting Synonymous Predicates from Online Encyclopedia with Rich Features
111(14)
Zhe Han
Yansong Feng
Dongyan Zhao
IR Applications and User Modeling
Patent Retrieval Based on Multiple Information Resources
125(13)
Kan Xu
Hongfei Lin
Yuan Lin
Bo Xu
Liang Yang
Shaowu Zhang
Simulating Ideal and Average Users
138(17)
Matthias Hagen
Maximilian Michel
Benno Stein
Constraining Word Embeddings by Prior Knowledge --- Application to Medical Information Retrieval
155(16)
Xiaojie Liu
Jian-Yun Nie
Alessandro Sordoni
Personalization and Recommendation
Use of Microblog Behavior Data in a Language Modeling Framework to Enhance Web Search Personalization
171(13)
Arjumand Younus
A Joint Framework for Collaborative Filtering and Metric Learning
184(13)
Tak-Lam Wong
Wai Lam
Haoran Xie
Fu Lee Wang
Scrutinizing Mobile App Recommendation: Identifying Important App-Related Indicators
197(15)
Jovian Lin
Kazunari Sugiyama
Min-Yen Kan
Tat-Seng Chua
User Model Enrichment for Venue Recommendation
212(12)
Mohammad Aliannejadi
Ida Mele
Fabio Crestani
Learning Distributed Representations for Recommender Systems with a Network Embedding Approach
224(13)
Wayne Xin Zhao
Jin Huang
Ji-Rong Wen
Factorizing Sequential and Historical Purchase Data for Basket Recommendation
237(14)
Pengfei Wang
Jiafeng Guo
Yanyan Lan
Jun Xu
Xueqi Cheng
IR Evaluation
Search Success Evaluation with Translation Model
251(16)
Cheng Luo
Yiqun Liu
Min Zhang
Shaoping Ma
Evaluating the Social Acceptability of Voice Based Smartwatch Search
267(12)
Christos Efthymiou
Martin Halvey
How Precise Does Document Scoring Need to Be?
279(16)
Ziying Yang
Alistair Moffat
Andrew Turpin
Short Paper
Noise Correction in Pairwise Document Preferences for Learning to Rank
295(7)
Harsh Trivedi
Prasenjit Majumder
Table Topic Models for Hidden Unit Estimation
302(6)
Minoru Yoshida
Kazuyuki Matsumoto
Kenji Kita
Query Subtopic Mining Exploiting Word Embedding for Search Result Diversification
308(7)
Md. Zia Ullah
Md. Shajalal
Abu Nowshed Chy
Masaki Aono
Assessing the Authors of Online Books in Digital Libraries Using Users Affinity
315(7)
B. de La Robertie
Reformulate or Quit: Predicting User Abandonment in Ideal Sessions
322(7)
Mustafa Zengin
Ben Carterette
Learning to Rank with Likelihood Loss Functions
329(6)
Yuan Lin
Liang Yang
Bo Xu
Hongfei Lin
Kan Xu
Learning to Improve Affinity Ranking for Diversity Search
335(7)
Yue Wu
Jingfei Li
Peng Zhang
Dawei Song
An In-Depth Study of Implicit Search Result Diversification
342(7)
Hai-Tao Yu
Adam Jatowt
Roi Blanco
Hideo Joho
Joemon Jose
Long Chen
Fajie Yuan
Predicting Information Diffusion in Social Networks with Users' Social Roles and Topic Interests
349(7)
Xiaoxuan Ren
Yan Zhang
When MetaMap Meets Social Media in Healthcare: Are the Word Labels Correct?
356(7)
Hongkui Tu
Zongyang Ma
Aixin Sun
Xiaodong Wang
Evaluation with Confusable Ground Truth
363(8)
Jiyi Li
Masatoshi Yoshikawa
Author Index 371