Atnaujinkite slapukų nuostatas

El. knyga: Innovative Learning Analytics for Evaluating Instruction: A Big Data Roadmap to Effective Online Learning

  • Formatas: 154 pages
  • Išleidimo metai: 19-Jul-2021
  • Leidėjas: Routledge
  • Kalba: eng
  • ISBN-13: 9781000454703
  • Formatas: 154 pages
  • Išleidimo metai: 19-Jul-2021
  • Leidėjas: Routledge
  • Kalba: eng
  • ISBN-13: 9781000454703

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Innovative Learning Analytics for Evaluating Instruction covers the application of a research methodology that uses big data to evaluate the effectiveness of online instruction. It is an ideal resource for faculty and professionals in instructional design, learning engineering, online learning, program evaluation, and research methods.



Innovative Learning Analytics for Evaluating Instruction covers the application of a forward-thinking research methodology that uses big data to evaluate the effectiveness of online instruction. Analysis of Patterns in Time (APT) is a practical analytic approach that finds meaningful patterns in massive data sets, capturing temporal maps of students’ learning journeys by combining qualitative and quantitative methods. Offering conceptual and research overviews, design principles, historical examples, and more, this book demonstrates how APT can yield strong, easily generalizable empirical evidence through big data; help students succeed in their learning journeys; and document the extraordinary effectiveness of First Principles of Instruction. It is an ideal resource for faculty and professionals in instructional design, learning engineering, online learning, program evaluation, and research methods.

1. Learning Journeys in Education
2. Overview of the Big Study
3. The
Indiana University Plagiarism Tutorials and Tests
4. More Details of the Big
Study
5. Analysis of Patterns in Time as a Research Methodology
6. Using
Analysis of Patterns in Time for Formative Evaluation of a Learning Design
7.
Analysis of Patterns in Time with Teaching and Learning Quality Surveys
8.
Analysis of Patterns in Time as an Alternative to Traditional Approaches
Theodore W. Frick is Professor Emeritus in the Department of Instructional Systems Technology in the School of Education at Indiana University Bloomington, USA.

Rodney D. Myers is Instructional Consultant in the School of Education at Indiana University Bloomington, USA.

Cesur Dagli is Research Analyst in the Office of Analytics & Institutional Effectiveness at Virginia Polytechnic Institute and State University, USA.

Andrew F. Barrett is Co-founder of ScaleLearning, Inc. and leads the Learning Technology team at Shopify, Inc., Canada