Atnaujinkite slapukų nuostatas

Integrated Nanoelectronics: Nanoscale CMOS, Post-CMOS and Allied Nanotechnologies 1st ed. 2016 [Kietas viršelis]

  • Formatas: Hardback, 451 pages, aukštis x plotis: 235x155 mm, weight: 9529 g, 181 Illustrations, color; XLI, 451 p. 181 illus. in color., 1 Hardback
  • Serija: NanoScience and Technology
  • Išleidimo metai: 30-Sep-2016
  • Leidėjas: Springer, India, Private Ltd
  • ISBN-10: 8132236238
  • ISBN-13: 9788132236238
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 451 pages, aukštis x plotis: 235x155 mm, weight: 9529 g, 181 Illustrations, color; XLI, 451 p. 181 illus. in color., 1 Hardback
  • Serija: NanoScience and Technology
  • Išleidimo metai: 30-Sep-2016
  • Leidėjas: Springer, India, Private Ltd
  • ISBN-10: 8132236238
  • ISBN-13: 9788132236238
Kitos knygos pagal šią temą:
Keeping nanoelectronics in focus, this book looks at interrelated fields namely nanomagnetics, nanophotonics, nanomechanics and nanobiotechnology, that go hand-in-hand or are likely to be utilized in future in various ways for backing up or strengthening nanoelectronics. Complementary nanosciences refer to the alternative nanosciences that can be combined with nanoelectronics. The book brings students and researchers from multiple disciplines (and therefore with disparate levels of knowledge, and, more importantly, lacunae in this knowledge) together and to expose them to the essentials of integrative nanosciences. The central idea is that the five identified disciplines overlap significantly and arguably cohere into one fundamental nanotechnology discipline. The book caters to interdisciplinary readership in contrast to many of the existing nanotechnology related books that relate to a specific discipline. The book lays special emphasis on nanoelectronics since this field has advanced most rapidly amongst all the nanotechnology disciplines and with significant commercial pervasion. In view of the significant impact that nanotechnology is predicted to have on society, the topics and their interrelationship in this book are of considerable interest and immense value to students, professional engineers, and reserachers.
1 Getting Started to Explore "Integrated Nanoelectronics"
1(10)
1.1 What "Integrated Nanoelectronics" Is About?
1(1)
1.2 Subdivision of the Book
2(1)
1.3 Organization of the Book
3(4)
1.3.1 Part I: Preliminaries
3(1)
1.3.2 Part II: CMOS Nanoelectronics
3(1)
1.3.3 Part III: CMOS-Supportive Nanotechnologies
4(1)
1.3.4 Part IV: Beyond CMOS Nanoelectronics
4(2)
1.3.5 Part V: Nanomanufacturing
6(1)
1.4 Discussion and Conclusions
7(4)
Review Exercises
7(1)
References
8(3)
Part I Preliminaries
2 Nanoelectronics and Synergistic Nanodisciplines
11(14)
2.1 Meaning of "Nano" and "Nanometer"
11(1)
2.2 Nanoscience
12(1)
2.3 Nanotechnology
12(1)
2.4 Plurality of Nanosciences and Nanotechnologies
12(1)
2.5 Nanomaterials
13(1)
2.6 Uniqueness and Specialty of Nanomaterials
13(2)
2.6.1 Quantum Size Effect
13(1)
2.6.2 Surface-Area-to-Volume Ratio
14(1)
2.7 Nanoelectronics
15(4)
2.7.1 More Moore Sub-domain
17(1)
2.7.2 More-than-Moore Sub-domain
17(1)
2.7.3 Beyond CMOS Sub-domain
17(1)
2.7.4 Convergence of Nanosciences
17(2)
2.8 Spintronics and Nanomagnetics
19(1)
2.9 Nanophotonics or Nano-optics
19(1)
2.10 Nanomechanics
20(1)
2.11 Nanobiotechnology
21(1)
2.12 Discussion and Conclusions
21(4)
Review Exercises
22(1)
References
23(2)
3 Nanomaterials and Their Properties
25(20)
3.1 Bewilderment from a Multitude of Nanomaterial Definitions
25(1)
3.2 ISO (International Organization for Standardization) Definitions
26(3)
3.2.1 Nanomaterial
26(1)
3.2.2 Nanoscale
26(1)
3.2.3 Nano-object
26(3)
3.3 EC (European Commission) Definitions
29(1)
3.3.1 Nanomaterial
29(1)
3.3.2 Particle
29(1)
3.3.3 Agglomerate
30(1)
3.3.4 Aggregate
30(1)
3.4 Mechanical Strength of Nanomaterials
30(1)
3.5 Characterizing Parameters for the Influence of Surface Effects on Material Properties
31(1)
3.6 Catalytic Effects of Nanomaterials
32(1)
3.7 Thermal Properties of Nanomaterials
32(1)
3.7.1 Melting Point Depression
32(1)
3.7.2 Negative Thermal Capacity
33(1)
3.8 Exciton Bohr Radius: A Characteristic Length for Quantum Confinement
33(1)
3.9 Electronic and Optical Properties of Nanomaterials
34(4)
3.9.1 Bandgap Broadening of a Spherical Semiconductor Nanocrystal: The Quantum Dot
34(3)
3.9.2 Interaction of Light with Metallic Nanoparticles
37(1)
3.10 Magnetic Properties of Nanomaterials
38(1)
3.10.1 Superparamagnetic Nanoparticles
38(1)
3.10.2 Magnetism in Gold Nanoparticles
39(1)
3.10.3 Giant Magnetoresistance (GMR) Effect
39(1)
3.11 Discussion and Conclusions
39(6)
Review Exercises
40(1)
References
41(4)
Part II CMOS Nanoelectronics
4 Downscaling Classical MOSFET
45(28)
4.1 Moore's Law
45(1)
4.2 The Classical, Planar, Single-Gate Bulk MOSFETs
46(3)
4.2.1 The MOS Device and its Electrical Characteristics
46(1)
4.2.2 Self-aligned Polysilicon Gate MOS Process
47(2)
4.2.3 Self-aligned Silicide (Salicide) Process
49(1)
4.3 Complementary Metal-Oxide-Semiconductor (CMOS) Technology
49(12)
4.3.1 CMOS Structure and Advantages
49(1)
4.3.2 CMOS NOT Gate
49(1)
4.3.3 CMOS NAND Gate
50(1)
4.3.4 CMOS NOR Gate
51(2)
4.3.5 CMOS Process
53(4)
4.3.6 Shallow Trench Isolation (STI) Process
57(4)
4.4 Scaling Trends of Classical MOSFETs
61(7)
4.4.1 Constant Field Scaling
61(4)
4.4.2 Constant Voltage Scaling
65(3)
4.5 Scaling Limits for Supply and Threshold Voltages in Classical MOSFETs
68(3)
4.5.1 Subthreshold Leakage Current
68(1)
4.5.2 Subthreshold Slope and VDD, VTh, Interrelationship
69(2)
4.6 Discussion and Conclusions
71(2)
Review Exercises
71(1)
References
72(1)
5 Short-Channel Effects in MOSFETs
73(22)
5.1 Meaning of "Short Channel"
73(1)
5.2 Polysilicon Gate Depletion Effect
74(1)
5.3 Gate-First or Gate-Last Fabrication Flow
75(3)
5.4 Threshold Voltage Roll-off and Drain-Induced Barrier Lowering (DIBL)
78(2)
5.5 Velocity Saturation
80(1)
5.6 Carrier Mobility Degradation
81(1)
5.6.1 Horizontal Field Effect
81(1)
5.6.2 Vertical Field Effect
81(1)
5.7 Impact Ionization
82(1)
5.8 Hot Carrier Effects
82(1)
5.8.1 Substrate Hot Electron (SHE) Injection
82(1)
5.8.2 Channel Hot Electron (CHE) Injection
83(1)
5.8.3 Drain Avalanche Hot Carrier (DAHC) Injection
83(1)
5.8.4 Charge Generation Inside SiO2
83(1)
5.9 Random Dopant Fluctuations (RDF)
83(1)
5.10 Overcoming Short-Channel Effects in Classical MOSFETs
83(8)
5.10.1 Avoiding DIBL Effect
83(1)
5.10.2 Reducing Gate Leakage Current
84(1)
5.10.3 Strain Engineering for Enhancing Carrier Mobility
85(3)
5.10.4 Minimization of Hot Carrier Effects
88(1)
5.10.5 Preventing Punch-Through
89(2)
5.10.6 Innovative Structures Superseding Classical MOSFET
91(1)
5.11 Discussion and Conclusions
91(4)
Review Exercises
92(1)
References
93(2)
6 SOI-MOSFETs
95(14)
6.1 Introduction
95(2)
6.2 SOI Wafer Manufacturing
97(4)
6.2.1 Separation by Implanted Oxygen (SIMOX) Process
97(1)
6.2.2 Bond and Etch-Back SOI (BESOI) Process
97(2)
6.2.3 Smart Cut® Process
99(2)
6.3 Classification of SOI-MOSFETs
101(1)
6.4 Floating Body Effects in SOI-MOSFET
101(4)
6.4.1 Kink Effects in Partially-Depleted SOI-MOSFET
101(4)
6.4.2 Absence of Kink Effects in Fully-Depleted SOI-MOSFET
105(1)
6.5 Disadvantage of SOI Technology: Self-heating Issue
105(1)
6.6 Double-Gate, Multiple-Gate, and Surround Gate MOSFETs
106(1)
6.7 Discussion and Conclusions
106(3)
Review Exercises
106(1)
References
107(2)
7 Trigate FETs and FINFETs
109(22)
7.1 Introduction
109(1)
7.2 Relooking at MOSFET Concept in Nanoscale
110(1)
7.3 The Path of MOSFET Restructuring
110(1)
7.4 Rotating the SOI-MOSFET by 90° for Making Trigate FET
110(1)
7.5 Advent of FENFET
111(2)
7.6 What About the Source and the Drain of FINFET?
113(1)
7.7 FINFET Versus Trigate FET
114(1)
7.8 FINFET Fabrication
114(1)
7.9 FINFET on SOI or Bulk Silicon Wafers?
114(7)
7.10 FINFET Comparison with Fully-Depleted SOI-MOSFET
121(1)
7.11 Classification of FINFETs
121(4)
7.12 Impact of Random Doping Effects and Other Process Variations on FINFETs
125(1)
7.13 Discussion and Conclusions
125(6)
Review Exercises
126(1)
References
126(5)
Part III CMOS-Supportive Nanotechnologies
8 Nanophotonics
131(18)
8.1 Introduction
131(1)
8.2 Diffraction-Limited Nanophotonics
132(8)
8.2.1 Plasmonics
132(4)
8.2.2 Photonic Crystals
136(2)
8.2.3 Quantum Dot Lasers
138(2)
8.2.4 Silicon Nanophotonics
140(1)
8.3 Nanophotonics Beyond the Diffraction Limit
140(5)
8.3.1 Near Field, Dressed Photons, and Nanophotonics
140(1)
8.3.2 Relevance of Plasmonics
141(1)
8.3.3 Exciton-Polariton Exchanges
141(1)
8.3.4 Nanophotonic Devices
142(3)
8.4 Discussion and Conclusions
145(4)
Review Exercises
146(1)
References
147(2)
9 Nanoelectromechanical Systems (NEMS)
149(14)
9.1 Introduction
149(1)
9.2 NEMS Sensor Classification
150(1)
9.3 MEMS Sensors Downscalable to NEMS Version
150(3)
9.3.1 Piezoresistive Sensors
150(1)
9.3.2 Tunneling Sensors
151(2)
9.4 MEMS Sensors Not Downscalable to NEMS Version
153(1)
9.5 CNT-Based Piezoresistive Nanosensors
153(1)
9.6 NEMS Resonators
154(2)
9.6.1 Resonator-Based Mass Sensors
154(2)
9.6.2 Resonator-Based Strain Sensors
156(1)
9.7 NEMS Actuators
156(2)
9.7.1 CNT Nanotweezers
156(1)
9.7.2 Nanogrippers
156(1)
9.7.3 Magnetic Bead Nanoactuator
157(1)
9.7.4 Nanoactuation by Magnetic Nanoparticles and AC Fields
157(1)
9.7.5 Ferroelectric Switching-Based Nanoactuator
157(1)
9.7.6 Optical Gradient Force-Driven NEMS Actuator
157(1)
9.8 NEMS Memories
158(2)
9.9 Discussion and Conclusions
160(3)
Review Exercises
160(1)
References
161(2)
10 Nanobiosensors
163(22)
10.1 Introduction
163(1)
10.2 Gold Nanoparticle (GNP) Biosensors
163(6)
10.2.1 Gold Nanoparticle-Enhanced Surface Plasmon Resonance (SPR) Biosensor
164(2)
10.2.2 Gold Nanoparticle LSPR Biosensor
166(2)
10.2.3 Gold Nanoparticle-Wired Electrochemical Biosensor
168(1)
10.3 Magnetic Nanoparticle Biosensors
169(2)
10.4 Quantum Dot (QD) Biosensors
171(5)
10.4.1 QD FRET Biosensor
172(1)
10.4.2 QD BRET Biosensor
172(1)
10.4.3 QD Charge Transfer-Coupled Biosensor
172(2)
10.4.4 QD CRET Biosensor
174(2)
10.5 Carbon Nanotube (CNT) Biosensors
176(1)
10.6 Si Nanowire (SiNW) Biosensors
177(4)
10.6.1 SiNW Electrochemical Biosensor
177(1)
10.6.2 SiNW Field-Effect Transistor (FET) Biosensor
177(2)
10.6.3 SiNW Fluorescence Biosensor
179(1)
10.6.4 SiNW Surface-Enhanced Raman Spectroscopy (SERS) Biosensor
179(2)
10.7 Nanocantilever Biosensor
181(1)
10.8 Discussion and Conclusions
181(4)
Review Exercises
181(1)
References
182(3)
11 Spintronics
185(14)
11.1 Introduction
185(3)
11.1.1 Defining Spintronics
185(1)
11.1.2 Spintronics and Semiconductor Nanoelectronics
186(1)
11.1.3 Branches of Spintronics
187(1)
11.2 Giant Magnetoresistance (GMR) in Magnetic Nanostructures
188(2)
11.3 Magnetic Tunnel Junction (MTJ)
190(1)
11.4 Magnetic Random Access Memory (MRAM)
191(3)
11.5 Spin Transfer Torque Random Access Memory (STT-RAM)
194(1)
11.6 Discussion and Conclusions
194(5)
Review Exercises
195(1)
References
196(3)
Part IV Beyond-CMOS Nanoelectronics
12 Tunnel Diodes and Field-Effect Transistors
199(24)
12.1 Introduction
199(1)
12.2 Quantum Mechanical Tunneling Across a P-N Junction
200(1)
12.3 Nondegenerate and Degenerate Semiconductors
201(2)
12.4 Negative Differential Resistance (NDR)
203(1)
12.5 Tunnel Diode (TD)
204(6)
12.5.1 TD Under Zero Bias
204(1)
12.5.2 TD Under Forward Bias
205(4)
12.5.3 TD Under Reverse Bias
209(1)
12.6 Resonant Tunneling
210(1)
12.7 Resonant Tunneling Diode (RTD)
210(6)
12.7.1 RTD Heterostructure
211(1)
12.7.2 Physical Phenomena in RTD
211(3)
12.7.3 Simplified Operation of RTD
214(2)
12.8 Advantages of RTD
216(1)
12.9 Challenges of RTD
216(1)
12.10 Applications of RTD
217(1)
12.11 Tunnel Field-Effect Transistor
217(3)
12.11.1 Recalling MOSFET Principle
217(1)
12.11.2 Tunnel FET Principle
217(1)
12.11.3 Tunnel FET Structure
217(1)
12.11.4 Tunnel FET Operation
218(1)
12.11.5 Participation of Valence and Conduction Bands in Tunnel FET Operation
218(2)
12.12 Discussion and Conclusions
220(3)
Review Exercises
220(1)
References
221(2)
13 Tunnel Junction, Coulomb Blockade, and Quantum Dot Circuit
223(24)
13.1 Introduction
224(1)
13.2 Coulomb Blockade in a Nanocapacitor
224(4)
13.2.1 Energy Required to Transfer a Single Electronic Charge
224(2)
13.2.2 Change in Energy Stored on Electron Tunneling
226(2)
13.3 Effect of Temperature
228(1)
13.4 Correlation of Uncertainty in the Number of Electrons with Capacitor Size
229(1)
13.5 Modeling the Tunnel Junction
230(3)
13.5.1 Tunnel Resistance
230(1)
13.5.2 A Constant Current Source Exciting a Tunnel Junction
231(2)
13.6 Basic Analysis of Quantum Dot Circuit
233(6)
13.6.1 Electron Tunneling into the Quantum Dot Island Through Tunnel Junction TJb
236(1)
13.6.2 Electron Tunneling off the Quantum Dot Island Through Tunnel Junction TJa
237(1)
13.6.3 Electron Tunneling into the QD Island Through TJa and Tunneling off the QD Island Through TJb
238(1)
13.7 Energy Band Diagram of Tunnel Junction/Quantum Dot/Tunnel Junction Structure
239(5)
13.7.1 Large Quantum Dot
239(2)
13.7.2 Small Quantum Dot
241(3)
13.8 Discussion and Conclusions
244(3)
Review Exercises
244(1)
References
245(2)
14 Single Electronics
247(26)
14.1 Introduction
247(1)
14.2 Single Electron Transistor Action
248(13)
14.3 Types of Single Electron Transistor Logic
261(2)
14.3.1 Voltage-Based Logic
261(2)
14.3.2 Charge-Based Logic
263(1)
14.4 Digital Logic Gates
263(5)
14.4.1 SET NOT Gate
264(1)
14.4.2 SET AND Gate
265(2)
14.4.3 SET OR Gate
267(1)
14.5 Other Applications
268(1)
14.6 Discussion and Conclusions
269(4)
Review Exercises
269(2)
References
271(2)
15 Semiconductor Nanowire as a Nanoelectronics Platform
273(12)
15.1 Introduction
273(1)
15.2 Nanowire Growth by Bottom-up and Top-Down Paradigms
273(1)
15.3 Metal-Catalyst-Assisted Vapor-Liquid-Solid (VLS) Method of Nanowire Growth
274(1)
15.4 Synthesis of Single Crystal Si Nanowires of Required Diameters
275(1)
15.5 Laser-Assisted Catalytic Growth and Doping of Si Nanowires
275(2)
15.6 Ohmic Contacts to Si Nanowires
277(1)
15.7 P-N Junction Diodes Made from Crossed Si Nanowires
277(1)
15.8 Bipolar Transistor Made from Crossed Si Nanowires
277(1)
15.9 Field-Effect Transistors Using Si Nanowires
277(1)
15.10 P-Channel, Ge/Si Core/Shell Nanowire Heterostructure Transistor
278(2)
15.11 N-Channel, GaN/AlN/AlGaN Heterostructure Nanowire Transistor
280(1)
15.12 Complementary Inverters Using P-Type and N-Type Si Nanowire Transistors
281(1)
15.13 Nanowire Integration Methods for Building Nanowire Circuits
281(1)
15.14 Discussion and Conclusions
282(3)
Review Exercises
282(1)
References
283(2)
16 Carbon Nanotube-Based Nanoelectronics
285(18)
16.1 Introduction
285(1)
16.2 Types of Carbon Nanotubes
286(1)
16.3 Geometrical Structure and Chirality of a Carbon Nanotube
286(1)
16.4 Electrical Properties of Carbon Nanotubes
286(4)
16.5 Mechanical Properties of Carbon Nanotubes
290(1)
16.6 Thermal Properties of Carbon Nanotubes
290(1)
16.7 Synthesis of Carbon Nanotubes
290(3)
16.7.1 Arc Discharge
290(1)
16.7.2 Laser Ablation
291(1)
16.7.3 Chemical Vapor Deposition (CVD)
291(2)
16.8 Chirality-Controlled Synthesis of Carbon Nanotubes
293(1)
16.9 Doping-Free Fabrication of CNT FET
293(1)
16.10 Self-aligned Processes for Fabrication of CNT FET
294(1)
16.11 Fabrication of P-Channel CNT FET
295(1)
16.12 Fabrication of N-Channel CNT FET
296(2)
16.13 Complementary Symmetry SWCNT FET Devices
298(1)
16.14 Pass Transistor Logic (PTL)
299(1)
16.15 Discussion and Conclusions
299(4)
Review Exercises
300(1)
References
301(2)
17 Graphene-Based Nanoelectronics
303(10)
17.1 Introduction
303(1)
17.2 Electrical Properties of Graphene
304(1)
17.3 Mechanical Properties of Graphene
305(1)
17.4 Optical Properties of Graphene
305(1)
17.5 Preparation of Graphene
305(2)
17.5.1 Micromechanical Exfoliation
305(1)
17.5.2 Growth on Metals Followed by Transfer to Insulating Substrates
306(1)
17.5.3 Thermal Decomposition of Silicon Carbide
306(1)
17.5.4 Substrate-Free Deposition
306(1)
17.6 First Graphene Top-Gated Transistor-like Field-Effect Device
307(1)
17.7 High-Frequency Graphene Transistor
307(1)
17.8 Opening a Bandgap in Graphene
307(1)
17.9 GNR Transistor
308(1)
17.10 Graphene Bilayer Transistor
308(1)
17.11 Hexagonal Boron Nitride (h-BN)-Graphene-Hexagonal Boron Nitride FET
309(1)
17.12 Discussion and Conclusions
310(3)
Review Exercises
310(1)
References
311(2)
18 Transition Metal Dichalcogenides-Based Nanoelectronics
313(10)
18.1 Introduction
313(1)
18.2 Composition and Mechanical Properties of TMDs
314(2)
18.3 Electrical Properties of TMDs
316(1)
18.4 Optical Properties of TMDs
316(1)
18.5 Preparation of TMDs
316(2)
18.5.1 Micromechanical Exfoliation
316(1)
18.5.2 Liquid Exfoliation
317(1)
18.5.3 Low-Temperature Decomposition of Precursors
317(1)
18.5.4 Chemical Vapor Deposition
317(1)
18.6 Single-Layer Dual-Gate MoS2 FET
318(1)
18.7 Bilayer Back-Gated MoS2 FET
318(1)
18.8 Multilayer Dual-Gate MOS2 Transistor
319(1)
18.9 Mobility Dependence on MoS2 Layer Thickness and Contact Quality
320(1)
18.10 Discussion and Conclusions
321(2)
Review Exercises
321(1)
References
322(1)
19 Quantum Dot Cellular Automata (QDCA)
323(18)
19.1 Introduction: Moving Towards Transistorless Computing Paradigms
323(1)
19.2 Tougaw-Lent Proposition of a Quantum Device
323(1)
19.3 Role of Quantum Dots in the Scheme
324(1)
19.4 The Standard QDCA Cell
324(2)
19.4.1 Four Quantum Dot, Two-Electron Arrangement
324(1)
19.4.2 Null and Polarization States of the QDCA Cell
325(1)
19.4.3 Changing the Polarization States of a QDCA Cell and Reading These States
326(1)
19.5 QDCA Cell Fabrication
326(1)
19.6 Advantages of QDCA Cell
327(1)
19.7 Binary Wire
327(1)
19.8 The 90° Wire
327(1)
19.9 The 45° Wire
328(1)
19.10 QDCA Inverter or NOT Gate
329(1)
19.11 QDCA Majority Voter
330(1)
19.12 QDCA OR Gate
331(2)
19.13 QDCA AND Gate
333(1)
19.14 Clocking of QDCA
334(3)
19.15 Experimental Validation of QDCA Cell and QDCA Logic Functionality
337(1)
19.16 Discussion and Conclusions
338(3)
Review Exercises
338(1)
References
339(2)
20 Nanomagnetic Logic
341(12)
20.1 Introduction
341(1)
20.2 Departing from Charge-Based Nanoelectronics
341(1)
20.2.1 Charge-Based MOSFET Nanoelectronics
341(1)
20.2.2 Charge-Based QDCA Nanoelectronics
342(1)
20.3 Single-Spin Logic
342(2)
20.4 The Notion of Room-Temperature Nanomagnetic Logic
344(1)
20.5 Magnetic Quantum Cellular Automata (MQCA)
345(1)
20.5.1 MQCA Versus QDCA
345(1)
20.5.2 MQCA and CMOS
345(1)
20.6 Reconfigurable Array of Magnetic Automata (RAMA)
346(3)
20.6.1 RAMA for Logic Gates
346(3)
20.6.2 RAMA as a Memory Array
349(1)
20.7 Discussion and Conclusions
349(4)
Review Exercises
350(1)
References
350(3)
21 Rapid Single Quantum Flux (RFSQ) Logic
353(12)
21.1 Introduction
353(1)
21.2 Information Storage and Transference in RFSQ Logic
353(1)
21.3 Components and Cells in RFSQ Logic
354(6)
21.3.1 The Buffer Stage
354(1)
21.3.2 Josephson Transmission Line (JTL)
355(1)
21.3.3 Pulse Splitter
356(1)
21.3.4 Non-reciprocal Buffer Stage
357(1)
21.3.5 The Confluence Buffer
357(1)
21.3.6 The SQUID as an R-S Flip-Flop
358(2)
21.4 RFSQ Circuit and Convention
360(1)
21.5 OR Gate
360(1)
21.6 NOT Gate
361(1)
21.7 RFSQ IC Fabrication Techniques
362(1)
21.8 Advantages and Applications of RFSQ Logic
362(1)
21.9 Disadvantages of RFSQ Logic
363(1)
21.10 Discussion and Conclusions
363(2)
Review Exercises
363(1)
References
364(1)
22 Molecular Nanoelectronics
365(16)
22.1 Introduction
365(1)
22.2 The Idea of Molecular Electronics
365(1)
22.3 Qualifying Characteristics of a Molecular Electronic Device and Related Hurdles
366(1)
22.4 Placement/Positioning and Contacting of Molecules
366(2)
22.4.1 Top Junction Formation by Microscopic Technique
367(1)
22.4.2 Nanogap Electrode Formation by Break Junction Method
367(1)
22.5 Electrical Behavior of Contacts
368(1)
22.6 Conducting Molecular Wires for Interfacing
369(1)
22.7 Insulators for Molecular Devices
369(1)
22.8 N- and P-Type Regions
370(1)
22.9 Molecular Switch
370(1)
22.9.1 Photochromic Switch
370(1)
22.9.2 Redox Switch
370(1)
22.10 Molecular Rectifying Diode
371(5)
22.11 Discussion and Conclusions
376(5)
Review Exercises
377(1)
References
378(3)
Part V Nanomanufacturing
23 Top-Down Nanofabrication
381(16)
23.1 Introduction
381(1)
23.2 Optical Lithography
382(3)
23.2.1 Key Metrics
382(2)
23.2.2 Immersion Lithography
384(1)
23.2.3 Extreme UV (EUV) Lithography
384(1)
23.3 Electron Beam (E-Beam) Lithography
385(3)
23.3.1 The Equipment and Method
385(2)
23.3.2 Proximity Effect
387(1)
23.3.3 Substrate Charging
387(1)
23.3.4 Electron Projection Lithography (EPL)
387(1)
23.4 Soft Lithography
388(2)
23.5 Nanoimprint Lithography (NIL)
390(3)
23.6 Block Copolymer (BCP) Lithography
393(1)
23.7 Scanning Probe Lithography (SPL)
394(1)
23.8 Discussion and Conclusions
394(3)
Review Exercises
395(1)
References
396(1)
24 Bottom-up Nanofabrication
397(22)
24.1 Introduction
397(1)
24.2 Sol-Gel Process
398(2)
24.3 Vapor Deposition (VD)
400(3)
24.3.1 Physical Vapor Deposition (PVD)
400(2)
24.3.2 Chemical Vapor Deposition (CVD)
402(1)
24.4 Atomic Layer Deposition (ALD)
403(3)
24.4.1 ALD Process
403(2)
24.4.2 Advantages of ALD
405(1)
24.4.3 Disadvantages of ALD
405(1)
24.4.4 Applications of ALD
406(1)
24.4.5 Limitations of ALD
406(1)
24.5 Molecular Self-Assembly
406(2)
24.5.1 Lipid Bilayer Formation by Self-Assembly
407(1)
24.5.2 Types of Molecular Self-Assembly
408(1)
24.6 Driving Factors for Self-Assembly
408(1)
24.6.1 Molecular Motion
408(1)
24.6.2 Intermolecular Forces
408(1)
24.7 Approaches for Self-Assembly
409(2)
24.7.1 Electrostatic Self-Assembly
409(1)
24.7.2 Self-Assembled Monolayers (SAMs)
410(1)
24.8 DNA Nanoengineering
411(3)
24.8.1 DNA Structure
411(2)
24.8.2 DNA Origami
413(1)
24.9 Self Assembly of Nanocomponent Arrays on DNA Scaffolds
414(1)
24.10 Self-Assembled DNA Scaffolds for Nanoelectronic Circuit Boards
414(1)
24.11 Discussion and Conclusions
415(4)
Review Exercises
415(2)
References
417(2)
25 Nanocharacterization Techniques
419(24)
25.1 Introduction
419(1)
25.2 Scanning Probe Microscopy (SPM)
420(4)
25.2.1 Near-Field Scanning Optical Microscopy (NSOM)
420(1)
25.2.2 Scanning Tunneling Microscopy (STM)
420(1)
25.2.3 Atomic Force Microscopy (AFM)
421(3)
25.3 Electron Microscopy
424(4)
25.3.1 Transmission Electron Microscopy (TEM)
424(1)
25.3.2 Scanning Electron Microscopy (SEM)
425(1)
25.3.3 Field Emission Scanning Electron Microscopy (FESEM)
425(2)
25.3.4 Focused Ion Beam Scanning Electron Microscopy (FIB-SEM)
427(1)
25.3.5 Specimen Preparation for Electron Microscopy
427(1)
25.3.6 Electron Microscope Upkeep and Maintenance
427(1)
25.4 X-Ray Techniques
428(2)
25.4.1 Energy Dispersive X-Ray Analysis (EDX)
428(1)
25.4.2 X-Ray Powder Diffraction (XRD)
428(1)
25.4.3 X-Ray Photoelectron Spectroscopy (XPS)
429(1)
25.5 Fourier Transform Infrared (FT-IR) Spectroscopy
430(2)
25.6 Ultraviolet and Visible (UV-Visible) Absorption Spectroscopy
432(1)
25.7 Raman Spectroscopy
433(3)
25.7.1 Resonance-Enhanced Raman Scattering Spectroscopy
435(1)
25.7.2 Surface-Enhanced Raman Scattering (SERS) Spectroscopy
435(1)
25.7.3 Confocal/Micro Raman Spectroscopy
436(1)
25.8 Photon Correlation Spectroscopy
436(1)
25.9 Zeta Potential Analysis by Laser Doppler Electrophoresis
437(1)
25.10 Laser Doppler Vibrometry (LDV)
438(2)
25.11 Discussion and Conclusions
440(3)
Review Exercises
440(2)
References
442(1)
Index 443
Vinod Kumar Khanna received his M.Sc. degree in physics from the University of Lucknow, Lucknow, India, in 1975, and his Ph.D. degree in physics from Kurukshetra University, Kurukshetra, India, in 1988 for the thesis entitled, Development, Characterization and Modelling of the Porous Alumina Humidity Sensor.  For more than 36 years at CSIR-CEERI, Dr. Khanna has been involved in different research and development projects on thin-film humidity sensors, high-voltage TV deflection transistors, power Darlington transistors for AC motor drives, fast-switching thyristors, high-current and high-voltage rectifiers, neutron dosimetry diodes, power DMOSFET and IGBT, PMOSFET gamma ray dosimeter, microelectromechanical system (MEMS) technology-based microsensors, ion-sensitive field-effect transistors (ISFETs), ISFET-based chemical and biosensors, capacitive MEMS ultrasonic transducer (cMUT), pressure sensors, MEMS gyroscopes, and MEMS hotplate gas sensors. His present research is focused on nanosensors, particularly on the nanotechnological approaches for improving ISFET performance, and the development of dual-gate silicon nanowire ion-sensitive field-effect transistor (Nano-ISFET).  He is a life member (Fellow) of the Institution of Electronics & Telecommunication Engineers (IETE), India, and also life member of Indian Physics Association (IPA), Semiconductor Society India (SSI), and Indo-French Technical Association (IFTA). Dr. Khanna has authored 9 previous books and contributed six chapters to edited books. He has authored or co-authored 181 research papers in various reputed international and national journals and conference proceedings ans holds four patents.