|
1 Getting Started to Explore "Integrated Nanoelectronics" |
|
|
1 | (10) |
|
1.1 What "Integrated Nanoelectronics" Is About? |
|
|
1 | (1) |
|
1.2 Subdivision of the Book |
|
|
2 | (1) |
|
1.3 Organization of the Book |
|
|
3 | (4) |
|
1.3.1 Part I: Preliminaries |
|
|
3 | (1) |
|
1.3.2 Part II: CMOS Nanoelectronics |
|
|
3 | (1) |
|
1.3.3 Part III: CMOS-Supportive Nanotechnologies |
|
|
4 | (1) |
|
1.3.4 Part IV: Beyond CMOS Nanoelectronics |
|
|
4 | (2) |
|
1.3.5 Part V: Nanomanufacturing |
|
|
6 | (1) |
|
1.4 Discussion and Conclusions |
|
|
7 | (4) |
|
|
7 | (1) |
|
|
8 | (3) |
|
|
|
2 Nanoelectronics and Synergistic Nanodisciplines |
|
|
11 | (14) |
|
2.1 Meaning of "Nano" and "Nanometer" |
|
|
11 | (1) |
|
|
12 | (1) |
|
|
12 | (1) |
|
2.4 Plurality of Nanosciences and Nanotechnologies |
|
|
12 | (1) |
|
|
13 | (1) |
|
2.6 Uniqueness and Specialty of Nanomaterials |
|
|
13 | (2) |
|
2.6.1 Quantum Size Effect |
|
|
13 | (1) |
|
2.6.2 Surface-Area-to-Volume Ratio |
|
|
14 | (1) |
|
|
15 | (4) |
|
2.7.1 More Moore Sub-domain |
|
|
17 | (1) |
|
2.7.2 More-than-Moore Sub-domain |
|
|
17 | (1) |
|
2.7.3 Beyond CMOS Sub-domain |
|
|
17 | (1) |
|
2.7.4 Convergence of Nanosciences |
|
|
17 | (2) |
|
2.8 Spintronics and Nanomagnetics |
|
|
19 | (1) |
|
2.9 Nanophotonics or Nano-optics |
|
|
19 | (1) |
|
|
20 | (1) |
|
|
21 | (1) |
|
2.12 Discussion and Conclusions |
|
|
21 | (4) |
|
|
22 | (1) |
|
|
23 | (2) |
|
3 Nanomaterials and Their Properties |
|
|
25 | (20) |
|
3.1 Bewilderment from a Multitude of Nanomaterial Definitions |
|
|
25 | (1) |
|
3.2 ISO (International Organization for Standardization) Definitions |
|
|
26 | (3) |
|
|
26 | (1) |
|
|
26 | (1) |
|
|
26 | (3) |
|
3.3 EC (European Commission) Definitions |
|
|
29 | (1) |
|
|
29 | (1) |
|
|
29 | (1) |
|
|
30 | (1) |
|
|
30 | (1) |
|
3.4 Mechanical Strength of Nanomaterials |
|
|
30 | (1) |
|
3.5 Characterizing Parameters for the Influence of Surface Effects on Material Properties |
|
|
31 | (1) |
|
3.6 Catalytic Effects of Nanomaterials |
|
|
32 | (1) |
|
3.7 Thermal Properties of Nanomaterials |
|
|
32 | (1) |
|
3.7.1 Melting Point Depression |
|
|
32 | (1) |
|
3.7.2 Negative Thermal Capacity |
|
|
33 | (1) |
|
3.8 Exciton Bohr Radius: A Characteristic Length for Quantum Confinement |
|
|
33 | (1) |
|
3.9 Electronic and Optical Properties of Nanomaterials |
|
|
34 | (4) |
|
3.9.1 Bandgap Broadening of a Spherical Semiconductor Nanocrystal: The Quantum Dot |
|
|
34 | (3) |
|
3.9.2 Interaction of Light with Metallic Nanoparticles |
|
|
37 | (1) |
|
3.10 Magnetic Properties of Nanomaterials |
|
|
38 | (1) |
|
3.10.1 Superparamagnetic Nanoparticles |
|
|
38 | (1) |
|
3.10.2 Magnetism in Gold Nanoparticles |
|
|
39 | (1) |
|
3.10.3 Giant Magnetoresistance (GMR) Effect |
|
|
39 | (1) |
|
3.11 Discussion and Conclusions |
|
|
39 | (6) |
|
|
40 | (1) |
|
|
41 | (4) |
|
Part II CMOS Nanoelectronics |
|
|
|
4 Downscaling Classical MOSFET |
|
|
45 | (28) |
|
|
45 | (1) |
|
4.2 The Classical, Planar, Single-Gate Bulk MOSFETs |
|
|
46 | (3) |
|
4.2.1 The MOS Device and its Electrical Characteristics |
|
|
46 | (1) |
|
4.2.2 Self-aligned Polysilicon Gate MOS Process |
|
|
47 | (2) |
|
4.2.3 Self-aligned Silicide (Salicide) Process |
|
|
49 | (1) |
|
4.3 Complementary Metal-Oxide-Semiconductor (CMOS) Technology |
|
|
49 | (12) |
|
4.3.1 CMOS Structure and Advantages |
|
|
49 | (1) |
|
|
49 | (1) |
|
|
50 | (1) |
|
|
51 | (2) |
|
|
53 | (4) |
|
4.3.6 Shallow Trench Isolation (STI) Process |
|
|
57 | (4) |
|
4.4 Scaling Trends of Classical MOSFETs |
|
|
61 | (7) |
|
4.4.1 Constant Field Scaling |
|
|
61 | (4) |
|
4.4.2 Constant Voltage Scaling |
|
|
65 | (3) |
|
4.5 Scaling Limits for Supply and Threshold Voltages in Classical MOSFETs |
|
|
68 | (3) |
|
4.5.1 Subthreshold Leakage Current |
|
|
68 | (1) |
|
4.5.2 Subthreshold Slope and VDD, VTh, Interrelationship |
|
|
69 | (2) |
|
4.6 Discussion and Conclusions |
|
|
71 | (2) |
|
|
71 | (1) |
|
|
72 | (1) |
|
5 Short-Channel Effects in MOSFETs |
|
|
73 | (22) |
|
5.1 Meaning of "Short Channel" |
|
|
73 | (1) |
|
5.2 Polysilicon Gate Depletion Effect |
|
|
74 | (1) |
|
5.3 Gate-First or Gate-Last Fabrication Flow |
|
|
75 | (3) |
|
5.4 Threshold Voltage Roll-off and Drain-Induced Barrier Lowering (DIBL) |
|
|
78 | (2) |
|
|
80 | (1) |
|
5.6 Carrier Mobility Degradation |
|
|
81 | (1) |
|
5.6.1 Horizontal Field Effect |
|
|
81 | (1) |
|
5.6.2 Vertical Field Effect |
|
|
81 | (1) |
|
|
82 | (1) |
|
|
82 | (1) |
|
5.8.1 Substrate Hot Electron (SHE) Injection |
|
|
82 | (1) |
|
5.8.2 Channel Hot Electron (CHE) Injection |
|
|
83 | (1) |
|
5.8.3 Drain Avalanche Hot Carrier (DAHC) Injection |
|
|
83 | (1) |
|
5.8.4 Charge Generation Inside SiO2 |
|
|
83 | (1) |
|
5.9 Random Dopant Fluctuations (RDF) |
|
|
83 | (1) |
|
5.10 Overcoming Short-Channel Effects in Classical MOSFETs |
|
|
83 | (8) |
|
5.10.1 Avoiding DIBL Effect |
|
|
83 | (1) |
|
5.10.2 Reducing Gate Leakage Current |
|
|
84 | (1) |
|
5.10.3 Strain Engineering for Enhancing Carrier Mobility |
|
|
85 | (3) |
|
5.10.4 Minimization of Hot Carrier Effects |
|
|
88 | (1) |
|
5.10.5 Preventing Punch-Through |
|
|
89 | (2) |
|
5.10.6 Innovative Structures Superseding Classical MOSFET |
|
|
91 | (1) |
|
5.11 Discussion and Conclusions |
|
|
91 | (4) |
|
|
92 | (1) |
|
|
93 | (2) |
|
|
95 | (14) |
|
|
95 | (2) |
|
6.2 SOI Wafer Manufacturing |
|
|
97 | (4) |
|
6.2.1 Separation by Implanted Oxygen (SIMOX) Process |
|
|
97 | (1) |
|
6.2.2 Bond and Etch-Back SOI (BESOI) Process |
|
|
97 | (2) |
|
|
99 | (2) |
|
6.3 Classification of SOI-MOSFETs |
|
|
101 | (1) |
|
6.4 Floating Body Effects in SOI-MOSFET |
|
|
101 | (4) |
|
6.4.1 Kink Effects in Partially-Depleted SOI-MOSFET |
|
|
101 | (4) |
|
6.4.2 Absence of Kink Effects in Fully-Depleted SOI-MOSFET |
|
|
105 | (1) |
|
6.5 Disadvantage of SOI Technology: Self-heating Issue |
|
|
105 | (1) |
|
6.6 Double-Gate, Multiple-Gate, and Surround Gate MOSFETs |
|
|
106 | (1) |
|
6.7 Discussion and Conclusions |
|
|
106 | (3) |
|
|
106 | (1) |
|
|
107 | (2) |
|
7 Trigate FETs and FINFETs |
|
|
109 | (22) |
|
|
109 | (1) |
|
7.2 Relooking at MOSFET Concept in Nanoscale |
|
|
110 | (1) |
|
7.3 The Path of MOSFET Restructuring |
|
|
110 | (1) |
|
7.4 Rotating the SOI-MOSFET by 90° for Making Trigate FET |
|
|
110 | (1) |
|
|
111 | (2) |
|
7.6 What About the Source and the Drain of FINFET? |
|
|
113 | (1) |
|
7.7 FINFET Versus Trigate FET |
|
|
114 | (1) |
|
|
114 | (1) |
|
7.9 FINFET on SOI or Bulk Silicon Wafers? |
|
|
114 | (7) |
|
7.10 FINFET Comparison with Fully-Depleted SOI-MOSFET |
|
|
121 | (1) |
|
7.11 Classification of FINFETs |
|
|
121 | (4) |
|
7.12 Impact of Random Doping Effects and Other Process Variations on FINFETs |
|
|
125 | (1) |
|
7.13 Discussion and Conclusions |
|
|
125 | (6) |
|
|
126 | (1) |
|
|
126 | (5) |
|
Part III CMOS-Supportive Nanotechnologies |
|
|
|
|
131 | (18) |
|
|
131 | (1) |
|
8.2 Diffraction-Limited Nanophotonics |
|
|
132 | (8) |
|
|
132 | (4) |
|
|
136 | (2) |
|
|
138 | (2) |
|
8.2.4 Silicon Nanophotonics |
|
|
140 | (1) |
|
8.3 Nanophotonics Beyond the Diffraction Limit |
|
|
140 | (5) |
|
8.3.1 Near Field, Dressed Photons, and Nanophotonics |
|
|
140 | (1) |
|
8.3.2 Relevance of Plasmonics |
|
|
141 | (1) |
|
8.3.3 Exciton-Polariton Exchanges |
|
|
141 | (1) |
|
8.3.4 Nanophotonic Devices |
|
|
142 | (3) |
|
8.4 Discussion and Conclusions |
|
|
145 | (4) |
|
|
146 | (1) |
|
|
147 | (2) |
|
9 Nanoelectromechanical Systems (NEMS) |
|
|
149 | (14) |
|
|
149 | (1) |
|
9.2 NEMS Sensor Classification |
|
|
150 | (1) |
|
9.3 MEMS Sensors Downscalable to NEMS Version |
|
|
150 | (3) |
|
9.3.1 Piezoresistive Sensors |
|
|
150 | (1) |
|
|
151 | (2) |
|
9.4 MEMS Sensors Not Downscalable to NEMS Version |
|
|
153 | (1) |
|
9.5 CNT-Based Piezoresistive Nanosensors |
|
|
153 | (1) |
|
|
154 | (2) |
|
9.6.1 Resonator-Based Mass Sensors |
|
|
154 | (2) |
|
9.6.2 Resonator-Based Strain Sensors |
|
|
156 | (1) |
|
|
156 | (2) |
|
|
156 | (1) |
|
|
156 | (1) |
|
9.7.3 Magnetic Bead Nanoactuator |
|
|
157 | (1) |
|
9.7.4 Nanoactuation by Magnetic Nanoparticles and AC Fields |
|
|
157 | (1) |
|
9.7.5 Ferroelectric Switching-Based Nanoactuator |
|
|
157 | (1) |
|
9.7.6 Optical Gradient Force-Driven NEMS Actuator |
|
|
157 | (1) |
|
|
158 | (2) |
|
9.9 Discussion and Conclusions |
|
|
160 | (3) |
|
|
160 | (1) |
|
|
161 | (2) |
|
|
163 | (22) |
|
|
163 | (1) |
|
10.2 Gold Nanoparticle (GNP) Biosensors |
|
|
163 | (6) |
|
10.2.1 Gold Nanoparticle-Enhanced Surface Plasmon Resonance (SPR) Biosensor |
|
|
164 | (2) |
|
10.2.2 Gold Nanoparticle LSPR Biosensor |
|
|
166 | (2) |
|
10.2.3 Gold Nanoparticle-Wired Electrochemical Biosensor |
|
|
168 | (1) |
|
10.3 Magnetic Nanoparticle Biosensors |
|
|
169 | (2) |
|
10.4 Quantum Dot (QD) Biosensors |
|
|
171 | (5) |
|
|
172 | (1) |
|
|
172 | (1) |
|
10.4.3 QD Charge Transfer-Coupled Biosensor |
|
|
172 | (2) |
|
|
174 | (2) |
|
10.5 Carbon Nanotube (CNT) Biosensors |
|
|
176 | (1) |
|
10.6 Si Nanowire (SiNW) Biosensors |
|
|
177 | (4) |
|
10.6.1 SiNW Electrochemical Biosensor |
|
|
177 | (1) |
|
10.6.2 SiNW Field-Effect Transistor (FET) Biosensor |
|
|
177 | (2) |
|
10.6.3 SiNW Fluorescence Biosensor |
|
|
179 | (1) |
|
10.6.4 SiNW Surface-Enhanced Raman Spectroscopy (SERS) Biosensor |
|
|
179 | (2) |
|
10.7 Nanocantilever Biosensor |
|
|
181 | (1) |
|
10.8 Discussion and Conclusions |
|
|
181 | (4) |
|
|
181 | (1) |
|
|
182 | (3) |
|
|
185 | (14) |
|
|
185 | (3) |
|
11.1.1 Defining Spintronics |
|
|
185 | (1) |
|
11.1.2 Spintronics and Semiconductor Nanoelectronics |
|
|
186 | (1) |
|
11.1.3 Branches of Spintronics |
|
|
187 | (1) |
|
11.2 Giant Magnetoresistance (GMR) in Magnetic Nanostructures |
|
|
188 | (2) |
|
11.3 Magnetic Tunnel Junction (MTJ) |
|
|
190 | (1) |
|
11.4 Magnetic Random Access Memory (MRAM) |
|
|
191 | (3) |
|
11.5 Spin Transfer Torque Random Access Memory (STT-RAM) |
|
|
194 | (1) |
|
11.6 Discussion and Conclusions |
|
|
194 | (5) |
|
|
195 | (1) |
|
|
196 | (3) |
|
Part IV Beyond-CMOS Nanoelectronics |
|
|
|
12 Tunnel Diodes and Field-Effect Transistors |
|
|
199 | (24) |
|
|
199 | (1) |
|
12.2 Quantum Mechanical Tunneling Across a P-N Junction |
|
|
200 | (1) |
|
12.3 Nondegenerate and Degenerate Semiconductors |
|
|
201 | (2) |
|
12.4 Negative Differential Resistance (NDR) |
|
|
203 | (1) |
|
|
204 | (6) |
|
12.5.1 TD Under Zero Bias |
|
|
204 | (1) |
|
12.5.2 TD Under Forward Bias |
|
|
205 | (4) |
|
12.5.3 TD Under Reverse Bias |
|
|
209 | (1) |
|
|
210 | (1) |
|
12.7 Resonant Tunneling Diode (RTD) |
|
|
210 | (6) |
|
12.7.1 RTD Heterostructure |
|
|
211 | (1) |
|
12.7.2 Physical Phenomena in RTD |
|
|
211 | (3) |
|
12.7.3 Simplified Operation of RTD |
|
|
214 | (2) |
|
|
216 | (1) |
|
|
216 | (1) |
|
12.10 Applications of RTD |
|
|
217 | (1) |
|
12.11 Tunnel Field-Effect Transistor |
|
|
217 | (3) |
|
12.11.1 Recalling MOSFET Principle |
|
|
217 | (1) |
|
12.11.2 Tunnel FET Principle |
|
|
217 | (1) |
|
12.11.3 Tunnel FET Structure |
|
|
217 | (1) |
|
12.11.4 Tunnel FET Operation |
|
|
218 | (1) |
|
12.11.5 Participation of Valence and Conduction Bands in Tunnel FET Operation |
|
|
218 | (2) |
|
12.12 Discussion and Conclusions |
|
|
220 | (3) |
|
|
220 | (1) |
|
|
221 | (2) |
|
13 Tunnel Junction, Coulomb Blockade, and Quantum Dot Circuit |
|
|
223 | (24) |
|
|
224 | (1) |
|
13.2 Coulomb Blockade in a Nanocapacitor |
|
|
224 | (4) |
|
13.2.1 Energy Required to Transfer a Single Electronic Charge |
|
|
224 | (2) |
|
13.2.2 Change in Energy Stored on Electron Tunneling |
|
|
226 | (2) |
|
13.3 Effect of Temperature |
|
|
228 | (1) |
|
13.4 Correlation of Uncertainty in the Number of Electrons with Capacitor Size |
|
|
229 | (1) |
|
13.5 Modeling the Tunnel Junction |
|
|
230 | (3) |
|
|
230 | (1) |
|
13.5.2 A Constant Current Source Exciting a Tunnel Junction |
|
|
231 | (2) |
|
13.6 Basic Analysis of Quantum Dot Circuit |
|
|
233 | (6) |
|
13.6.1 Electron Tunneling into the Quantum Dot Island Through Tunnel Junction TJb |
|
|
236 | (1) |
|
13.6.2 Electron Tunneling off the Quantum Dot Island Through Tunnel Junction TJa |
|
|
237 | (1) |
|
13.6.3 Electron Tunneling into the QD Island Through TJa and Tunneling off the QD Island Through TJb |
|
|
238 | (1) |
|
13.7 Energy Band Diagram of Tunnel Junction/Quantum Dot/Tunnel Junction Structure |
|
|
239 | (5) |
|
|
239 | (2) |
|
|
241 | (3) |
|
13.8 Discussion and Conclusions |
|
|
244 | (3) |
|
|
244 | (1) |
|
|
245 | (2) |
|
|
247 | (26) |
|
|
247 | (1) |
|
14.2 Single Electron Transistor Action |
|
|
248 | (13) |
|
14.3 Types of Single Electron Transistor Logic |
|
|
261 | (2) |
|
14.3.1 Voltage-Based Logic |
|
|
261 | (2) |
|
14.3.2 Charge-Based Logic |
|
|
263 | (1) |
|
|
263 | (5) |
|
|
264 | (1) |
|
|
265 | (2) |
|
|
267 | (1) |
|
|
268 | (1) |
|
14.6 Discussion and Conclusions |
|
|
269 | (4) |
|
|
269 | (2) |
|
|
271 | (2) |
|
15 Semiconductor Nanowire as a Nanoelectronics Platform |
|
|
273 | (12) |
|
|
273 | (1) |
|
15.2 Nanowire Growth by Bottom-up and Top-Down Paradigms |
|
|
273 | (1) |
|
15.3 Metal-Catalyst-Assisted Vapor-Liquid-Solid (VLS) Method of Nanowire Growth |
|
|
274 | (1) |
|
15.4 Synthesis of Single Crystal Si Nanowires of Required Diameters |
|
|
275 | (1) |
|
15.5 Laser-Assisted Catalytic Growth and Doping of Si Nanowires |
|
|
275 | (2) |
|
15.6 Ohmic Contacts to Si Nanowires |
|
|
277 | (1) |
|
15.7 P-N Junction Diodes Made from Crossed Si Nanowires |
|
|
277 | (1) |
|
15.8 Bipolar Transistor Made from Crossed Si Nanowires |
|
|
277 | (1) |
|
15.9 Field-Effect Transistors Using Si Nanowires |
|
|
277 | (1) |
|
15.10 P-Channel, Ge/Si Core/Shell Nanowire Heterostructure Transistor |
|
|
278 | (2) |
|
15.11 N-Channel, GaN/AlN/AlGaN Heterostructure Nanowire Transistor |
|
|
280 | (1) |
|
15.12 Complementary Inverters Using P-Type and N-Type Si Nanowire Transistors |
|
|
281 | (1) |
|
15.13 Nanowire Integration Methods for Building Nanowire Circuits |
|
|
281 | (1) |
|
15.14 Discussion and Conclusions |
|
|
282 | (3) |
|
|
282 | (1) |
|
|
283 | (2) |
|
16 Carbon Nanotube-Based Nanoelectronics |
|
|
285 | (18) |
|
|
285 | (1) |
|
16.2 Types of Carbon Nanotubes |
|
|
286 | (1) |
|
16.3 Geometrical Structure and Chirality of a Carbon Nanotube |
|
|
286 | (1) |
|
16.4 Electrical Properties of Carbon Nanotubes |
|
|
286 | (4) |
|
16.5 Mechanical Properties of Carbon Nanotubes |
|
|
290 | (1) |
|
16.6 Thermal Properties of Carbon Nanotubes |
|
|
290 | (1) |
|
16.7 Synthesis of Carbon Nanotubes |
|
|
290 | (3) |
|
|
290 | (1) |
|
|
291 | (1) |
|
16.7.3 Chemical Vapor Deposition (CVD) |
|
|
291 | (2) |
|
16.8 Chirality-Controlled Synthesis of Carbon Nanotubes |
|
|
293 | (1) |
|
16.9 Doping-Free Fabrication of CNT FET |
|
|
293 | (1) |
|
16.10 Self-aligned Processes for Fabrication of CNT FET |
|
|
294 | (1) |
|
16.11 Fabrication of P-Channel CNT FET |
|
|
295 | (1) |
|
16.12 Fabrication of N-Channel CNT FET |
|
|
296 | (2) |
|
16.13 Complementary Symmetry SWCNT FET Devices |
|
|
298 | (1) |
|
16.14 Pass Transistor Logic (PTL) |
|
|
299 | (1) |
|
16.15 Discussion and Conclusions |
|
|
299 | (4) |
|
|
300 | (1) |
|
|
301 | (2) |
|
17 Graphene-Based Nanoelectronics |
|
|
303 | (10) |
|
|
303 | (1) |
|
17.2 Electrical Properties of Graphene |
|
|
304 | (1) |
|
17.3 Mechanical Properties of Graphene |
|
|
305 | (1) |
|
17.4 Optical Properties of Graphene |
|
|
305 | (1) |
|
17.5 Preparation of Graphene |
|
|
305 | (2) |
|
17.5.1 Micromechanical Exfoliation |
|
|
305 | (1) |
|
17.5.2 Growth on Metals Followed by Transfer to Insulating Substrates |
|
|
306 | (1) |
|
17.5.3 Thermal Decomposition of Silicon Carbide |
|
|
306 | (1) |
|
17.5.4 Substrate-Free Deposition |
|
|
306 | (1) |
|
17.6 First Graphene Top-Gated Transistor-like Field-Effect Device |
|
|
307 | (1) |
|
17.7 High-Frequency Graphene Transistor |
|
|
307 | (1) |
|
17.8 Opening a Bandgap in Graphene |
|
|
307 | (1) |
|
|
308 | (1) |
|
17.10 Graphene Bilayer Transistor |
|
|
308 | (1) |
|
17.11 Hexagonal Boron Nitride (h-BN)-Graphene-Hexagonal Boron Nitride FET |
|
|
309 | (1) |
|
17.12 Discussion and Conclusions |
|
|
310 | (3) |
|
|
310 | (1) |
|
|
311 | (2) |
|
18 Transition Metal Dichalcogenides-Based Nanoelectronics |
|
|
313 | (10) |
|
|
313 | (1) |
|
18.2 Composition and Mechanical Properties of TMDs |
|
|
314 | (2) |
|
18.3 Electrical Properties of TMDs |
|
|
316 | (1) |
|
18.4 Optical Properties of TMDs |
|
|
316 | (1) |
|
|
316 | (2) |
|
18.5.1 Micromechanical Exfoliation |
|
|
316 | (1) |
|
18.5.2 Liquid Exfoliation |
|
|
317 | (1) |
|
18.5.3 Low-Temperature Decomposition of Precursors |
|
|
317 | (1) |
|
18.5.4 Chemical Vapor Deposition |
|
|
317 | (1) |
|
18.6 Single-Layer Dual-Gate MoS2 FET |
|
|
318 | (1) |
|
18.7 Bilayer Back-Gated MoS2 FET |
|
|
318 | (1) |
|
18.8 Multilayer Dual-Gate MOS2 Transistor |
|
|
319 | (1) |
|
18.9 Mobility Dependence on MoS2 Layer Thickness and Contact Quality |
|
|
320 | (1) |
|
18.10 Discussion and Conclusions |
|
|
321 | (2) |
|
|
321 | (1) |
|
|
322 | (1) |
|
19 Quantum Dot Cellular Automata (QDCA) |
|
|
323 | (18) |
|
19.1 Introduction: Moving Towards Transistorless Computing Paradigms |
|
|
323 | (1) |
|
19.2 Tougaw-Lent Proposition of a Quantum Device |
|
|
323 | (1) |
|
19.3 Role of Quantum Dots in the Scheme |
|
|
324 | (1) |
|
19.4 The Standard QDCA Cell |
|
|
324 | (2) |
|
19.4.1 Four Quantum Dot, Two-Electron Arrangement |
|
|
324 | (1) |
|
19.4.2 Null and Polarization States of the QDCA Cell |
|
|
325 | (1) |
|
19.4.3 Changing the Polarization States of a QDCA Cell and Reading These States |
|
|
326 | (1) |
|
19.5 QDCA Cell Fabrication |
|
|
326 | (1) |
|
19.6 Advantages of QDCA Cell |
|
|
327 | (1) |
|
|
327 | (1) |
|
|
327 | (1) |
|
|
328 | (1) |
|
19.10 QDCA Inverter or NOT Gate |
|
|
329 | (1) |
|
19.11 QDCA Majority Voter |
|
|
330 | (1) |
|
|
331 | (2) |
|
|
333 | (1) |
|
|
334 | (3) |
|
19.15 Experimental Validation of QDCA Cell and QDCA Logic Functionality |
|
|
337 | (1) |
|
19.16 Discussion and Conclusions |
|
|
338 | (3) |
|
|
338 | (1) |
|
|
339 | (2) |
|
|
341 | (12) |
|
|
341 | (1) |
|
20.2 Departing from Charge-Based Nanoelectronics |
|
|
341 | (1) |
|
20.2.1 Charge-Based MOSFET Nanoelectronics |
|
|
341 | (1) |
|
20.2.2 Charge-Based QDCA Nanoelectronics |
|
|
342 | (1) |
|
|
342 | (2) |
|
20.4 The Notion of Room-Temperature Nanomagnetic Logic |
|
|
344 | (1) |
|
20.5 Magnetic Quantum Cellular Automata (MQCA) |
|
|
345 | (1) |
|
|
345 | (1) |
|
|
345 | (1) |
|
20.6 Reconfigurable Array of Magnetic Automata (RAMA) |
|
|
346 | (3) |
|
20.6.1 RAMA for Logic Gates |
|
|
346 | (3) |
|
20.6.2 RAMA as a Memory Array |
|
|
349 | (1) |
|
20.7 Discussion and Conclusions |
|
|
349 | (4) |
|
|
350 | (1) |
|
|
350 | (3) |
|
21 Rapid Single Quantum Flux (RFSQ) Logic |
|
|
353 | (12) |
|
|
353 | (1) |
|
21.2 Information Storage and Transference in RFSQ Logic |
|
|
353 | (1) |
|
21.3 Components and Cells in RFSQ Logic |
|
|
354 | (6) |
|
|
354 | (1) |
|
21.3.2 Josephson Transmission Line (JTL) |
|
|
355 | (1) |
|
|
356 | (1) |
|
21.3.4 Non-reciprocal Buffer Stage |
|
|
357 | (1) |
|
21.3.5 The Confluence Buffer |
|
|
357 | (1) |
|
21.3.6 The SQUID as an R-S Flip-Flop |
|
|
358 | (2) |
|
21.4 RFSQ Circuit and Convention |
|
|
360 | (1) |
|
|
360 | (1) |
|
|
361 | (1) |
|
21.7 RFSQ IC Fabrication Techniques |
|
|
362 | (1) |
|
21.8 Advantages and Applications of RFSQ Logic |
|
|
362 | (1) |
|
21.9 Disadvantages of RFSQ Logic |
|
|
363 | (1) |
|
21.10 Discussion and Conclusions |
|
|
363 | (2) |
|
|
363 | (1) |
|
|
364 | (1) |
|
22 Molecular Nanoelectronics |
|
|
365 | (16) |
|
|
365 | (1) |
|
22.2 The Idea of Molecular Electronics |
|
|
365 | (1) |
|
22.3 Qualifying Characteristics of a Molecular Electronic Device and Related Hurdles |
|
|
366 | (1) |
|
22.4 Placement/Positioning and Contacting of Molecules |
|
|
366 | (2) |
|
22.4.1 Top Junction Formation by Microscopic Technique |
|
|
367 | (1) |
|
22.4.2 Nanogap Electrode Formation by Break Junction Method |
|
|
367 | (1) |
|
22.5 Electrical Behavior of Contacts |
|
|
368 | (1) |
|
22.6 Conducting Molecular Wires for Interfacing |
|
|
369 | (1) |
|
22.7 Insulators for Molecular Devices |
|
|
369 | (1) |
|
22.8 N- and P-Type Regions |
|
|
370 | (1) |
|
|
370 | (1) |
|
22.9.1 Photochromic Switch |
|
|
370 | (1) |
|
|
370 | (1) |
|
22.10 Molecular Rectifying Diode |
|
|
371 | (5) |
|
22.11 Discussion and Conclusions |
|
|
376 | (5) |
|
|
377 | (1) |
|
|
378 | (3) |
|
|
|
23 Top-Down Nanofabrication |
|
|
381 | (16) |
|
|
381 | (1) |
|
|
382 | (3) |
|
|
382 | (2) |
|
23.2.2 Immersion Lithography |
|
|
384 | (1) |
|
23.2.3 Extreme UV (EUV) Lithography |
|
|
384 | (1) |
|
23.3 Electron Beam (E-Beam) Lithography |
|
|
385 | (3) |
|
23.3.1 The Equipment and Method |
|
|
385 | (2) |
|
|
387 | (1) |
|
23.3.3 Substrate Charging |
|
|
387 | (1) |
|
23.3.4 Electron Projection Lithography (EPL) |
|
|
387 | (1) |
|
|
388 | (2) |
|
23.5 Nanoimprint Lithography (NIL) |
|
|
390 | (3) |
|
23.6 Block Copolymer (BCP) Lithography |
|
|
393 | (1) |
|
23.7 Scanning Probe Lithography (SPL) |
|
|
394 | (1) |
|
23.8 Discussion and Conclusions |
|
|
394 | (3) |
|
|
395 | (1) |
|
|
396 | (1) |
|
24 Bottom-up Nanofabrication |
|
|
397 | (22) |
|
|
397 | (1) |
|
|
398 | (2) |
|
24.3 Vapor Deposition (VD) |
|
|
400 | (3) |
|
24.3.1 Physical Vapor Deposition (PVD) |
|
|
400 | (2) |
|
24.3.2 Chemical Vapor Deposition (CVD) |
|
|
402 | (1) |
|
24.4 Atomic Layer Deposition (ALD) |
|
|
403 | (3) |
|
|
403 | (2) |
|
|
405 | (1) |
|
24.4.3 Disadvantages of ALD |
|
|
405 | (1) |
|
24.4.4 Applications of ALD |
|
|
406 | (1) |
|
24.4.5 Limitations of ALD |
|
|
406 | (1) |
|
24.5 Molecular Self-Assembly |
|
|
406 | (2) |
|
24.5.1 Lipid Bilayer Formation by Self-Assembly |
|
|
407 | (1) |
|
24.5.2 Types of Molecular Self-Assembly |
|
|
408 | (1) |
|
24.6 Driving Factors for Self-Assembly |
|
|
408 | (1) |
|
|
408 | (1) |
|
24.6.2 Intermolecular Forces |
|
|
408 | (1) |
|
24.7 Approaches for Self-Assembly |
|
|
409 | (2) |
|
24.7.1 Electrostatic Self-Assembly |
|
|
409 | (1) |
|
24.7.2 Self-Assembled Monolayers (SAMs) |
|
|
410 | (1) |
|
|
411 | (3) |
|
|
411 | (2) |
|
|
413 | (1) |
|
24.9 Self Assembly of Nanocomponent Arrays on DNA Scaffolds |
|
|
414 | (1) |
|
24.10 Self-Assembled DNA Scaffolds for Nanoelectronic Circuit Boards |
|
|
414 | (1) |
|
24.11 Discussion and Conclusions |
|
|
415 | (4) |
|
|
415 | (2) |
|
|
417 | (2) |
|
25 Nanocharacterization Techniques |
|
|
419 | (24) |
|
|
419 | (1) |
|
25.2 Scanning Probe Microscopy (SPM) |
|
|
420 | (4) |
|
25.2.1 Near-Field Scanning Optical Microscopy (NSOM) |
|
|
420 | (1) |
|
25.2.2 Scanning Tunneling Microscopy (STM) |
|
|
420 | (1) |
|
25.2.3 Atomic Force Microscopy (AFM) |
|
|
421 | (3) |
|
|
424 | (4) |
|
25.3.1 Transmission Electron Microscopy (TEM) |
|
|
424 | (1) |
|
25.3.2 Scanning Electron Microscopy (SEM) |
|
|
425 | (1) |
|
25.3.3 Field Emission Scanning Electron Microscopy (FESEM) |
|
|
425 | (2) |
|
25.3.4 Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) |
|
|
427 | (1) |
|
25.3.5 Specimen Preparation for Electron Microscopy |
|
|
427 | (1) |
|
25.3.6 Electron Microscope Upkeep and Maintenance |
|
|
427 | (1) |
|
|
428 | (2) |
|
25.4.1 Energy Dispersive X-Ray Analysis (EDX) |
|
|
428 | (1) |
|
25.4.2 X-Ray Powder Diffraction (XRD) |
|
|
428 | (1) |
|
25.4.3 X-Ray Photoelectron Spectroscopy (XPS) |
|
|
429 | (1) |
|
25.5 Fourier Transform Infrared (FT-IR) Spectroscopy |
|
|
430 | (2) |
|
25.6 Ultraviolet and Visible (UV-Visible) Absorption Spectroscopy |
|
|
432 | (1) |
|
|
433 | (3) |
|
25.7.1 Resonance-Enhanced Raman Scattering Spectroscopy |
|
|
435 | (1) |
|
25.7.2 Surface-Enhanced Raman Scattering (SERS) Spectroscopy |
|
|
435 | (1) |
|
25.7.3 Confocal/Micro Raman Spectroscopy |
|
|
436 | (1) |
|
25.8 Photon Correlation Spectroscopy |
|
|
436 | (1) |
|
25.9 Zeta Potential Analysis by Laser Doppler Electrophoresis |
|
|
437 | (1) |
|
25.10 Laser Doppler Vibrometry (LDV) |
|
|
438 | (2) |
|
25.11 Discussion and Conclusions |
|
|
440 | (3) |
|
|
440 | (2) |
|
|
442 | (1) |
Index |
|
443 | |