Atnaujinkite slapukų nuostatas

El. knyga: Intelligent Robotics: 5th China Annual Conference, CIRAC 2024, Dalian, China, September 20-22, 2024, Proceedings

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book constitutes selected papers presented during the 5th China Annual Intelligent Robotics Conference, CIRAC 2024, held in Dalian, China, in September 2024. 





The 28 full papers presented in this volume were carefully reviewed and selected from 96 submissions. 





They are grouped into the following topics: Deep Learning Architecture; Low-Level Vision; Multi-modal learning; Pattern Recognition; Robotics; and Signal processing.
.- Deep Learning Architecture.

.- Average Merging and Prompting Training for Policy Generalization.

.- A Recommender System for Mining Personalized User Preferences.

.- An Automatic Hyperparameter Optimization Method for An Improved DQN.

.- SINR Analysis of Cell-Free Massive MIMO Systems Assisted by Intelligent
Reflecting Surface.

.- Bearing Fault Diagnosis with Small Samples Based on Multi-Scale
Convolutional Kernels Attention Network.

.- Low-Level Vision.

.- SF-SARnet: Custom SAR Image Generation for Specific Locations.

.- Underwater Light Mask Transformer for Underwater Image Enhancement.

.- Improvement and Application of Multi-type Image Enhancement Algorithms.

.- Multi-modal learning.

.- Ordinal and Position Enhance the Framework of the Multimodal Dialogue
System.

.- A Two-Stage Approach for Multimodal Emotion Cause Pair Extraction Based on
Large Language Models.

.- Hierarchical Language-Conditioned Robot Learning with Vision-Language
Models.

.- Pattern Recognition.

.- Research on Seafood Traceability System Based on Blockchain.

.- Exploring the Improvement of Detection Networks through Multilevel Filter
Modules.

.- DeepMHT: Moving Object Segmentation in the Point Cloud Based on Deep
Learning and Multiple Hypothesis Tracking.

.- Underwater Salient Object Detection Based on Swintransformer.

.- Optimizing Gesture Recognition for Real-Time Mouse Control with MEG-YOLOv5
.

.- LGFNet: A Remote Sensing Change Detection Network with Local-Global
Semantic Feature Fusion.

.- Robotics.

.- A Deep Reinforcement Learning Method with Adaptive Heuristic Function
Improvement for Mobile Robot Nav-igation in Substation Environment.

.- Multi-Robot Task Allocation and Path Planning Method Based on Improved
Genetic Algorithm and Conflict-Based Search.

.- An Integrated Solution to Improve the Environment Awareness and Path
Planning Efficiency of Smart Wheelchairs.

.- Learning-based Traversability Costmap for Autonomous Off-road Navigation.

.- Complex Environment-based Multiagent Swarm Cooperative Encirclement of
Unmanned Surface Vehicle Clusters.

.- Fusion of DDPG and Particle Swarm Optimization for UAV Path Planning.

.- Highly Adaptive Dual-Robot Collaborative Embodied Intelligence Grasping
System.

.- Modified TD3 Reinforcement Learning-Based Path Following Control for an
Autonomous Underwater Vehicle·

.- Enhancing Crowdsourcing Data Accuracy for Robot Training via Confidence
Learning and GNN.

.- Signal processing.

.- SER Analysis of Cell-Free Massive MIMO System under Perfect CSI.

.- Phase Difference Ranging Study based on MF R-Mode Signals.