Atnaujinkite slapukų nuostatas

El. knyga: Intermittent Convex Integration for the 3D Euler Equations

  • Formatas: 256 pages
  • Serija: Annals of Mathematics Studies
  • Išleidimo metai: 11-Jul-2023
  • Leidėjas: Princeton University Press
  • Kalba: eng
  • ISBN-13: 9780691249568
Kitos knygos pagal šią temą:
  • Formatas: 256 pages
  • Serija: Annals of Mathematics Studies
  • Išleidimo metai: 11-Jul-2023
  • Leidėjas: Princeton University Press
  • Kalba: eng
  • ISBN-13: 9780691249568
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

A new threshold for the existence of weak solutions to the incompressible Euler equations

To gain insight into the nature of turbulent fluids, mathematicians start from experimental facts, translate them into mathematical properties for solutions of the fundamental fluids PDEs, and construct solutions to these PDEs that exhibit turbulent properties. This book belongs to such a program, one that has brought convex integration techniques into hydrodynamics. Convex integration techniques have been used to produce solutions with precise regularity, which are necessary for the resolution of the Onsager conjecture for the 3D Euler equations, or solutions with intermittency, which are necessary for the construction of dissipative weak solutions for the Navier-Stokes equations. In this book, weak solutions to the 3D Euler equations are constructed for the first time with both non-negligible regularity and intermittency. These solutions enjoy a spatial regularity index in L^2 that can be taken as close as desired to 1/2, thus lying at the threshold of all known convex integration methods. This property matches the measured intermittent nature of turbulent flows. The construction of such solutions requires technology specifically adapted to the inhomogeneities inherent in intermittent solutions. The main technical contribution of this book is to develop convex integration techniques at the local rather than global level. This localization procedure functions as an ad hoc wavelet decomposition of the solution, carrying information about position, amplitude, and frequency in both Lagrangian and Eulerian coordinates.

Tristan Buckmaster is professor of mathematics at the University of Maryland. Nader Masmoudi is professor of mathematics at New York University. Matthew Novack is assistant professor of mathematics at Purdue University. Vlad Vicol is professor of mathematics at New York University.