Atnaujinkite slapukų nuostatas

El. knyga: Intersection Homology & Perverse Sheaves: with Applications to Singularities

  • Formatas: EPUB+DRM
  • Serija: Graduate Texts in Mathematics 281
  • Išleidimo metai: 30-Nov-2019
  • Leidėjas: Springer Nature Switzerland AG
  • Kalba: eng
  • ISBN-13: 9783030276447
  • Formatas: EPUB+DRM
  • Serija: Graduate Texts in Mathematics 281
  • Išleidimo metai: 30-Nov-2019
  • Leidėjas: Springer Nature Switzerland AG
  • Kalba: eng
  • ISBN-13: 9783030276447

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This textbook provides a gentle introduction to intersection homology and perverse sheaves, where concrete examples and geometric applications motivate concepts throughout. By giving a taste of the main ideas in the field, the author welcomes new readers to this exciting area at the crossroads of topology, algebraic geometry, analysis, and differential equations. Those looking to delve further into the abstract theory will find ample references to facilitate navigation of both classic and recent literature.

Beginning with an introduction to intersection homology from a geometric and topological viewpoint, the text goes on to develop the sheaf-theoretical perspective. Then algebraic geometry comes to the fore: a brief discussion of constructibility opens onto an in-depth exploration of perverse sheaves. Highlights from the following chapters include a detailed account of the proof of the Beilinson–Bernstein–Deligne–Gabber (BBDG) decomposition theorem, applications of perverse sheaves to hypersurface singularities, and a discussion of Hodge-theoretic aspects of intersection homology via Saito’s deep theory of mixed Hodge modules. An epilogue offers a succinct summary of the literature surrounding some recent applications.

Intersection Homology & Perverse Sheaves is suitable for graduate students with a basic background in topology and algebraic geometry. By building context and familiarity with examples, the text offers an ideal starting point for those entering the field. This classroom-tested approach opens the door to further study and to current research.


Recenzijos

This is quite a lot for a relatively short book! this book provides a great jumping-off point for the reader who wants to learn about these tools by a route leading to the forefront of modern research via lots of concrete geometric examples. (Greg Friedman, Mathematical Reviews, March, 2023)

This book is a welcome addition to the family of introductions to intersection cohomology and perverse sheaves. the author takes care to introduce and motivate the main objects of study with geometric examples. There are also regular exercises which will help readers come to grips with the material. this book will ... be a very useful resource . (Jon Woolf, zbMATH 1476.55001, 2022)

This is a good textbook to prepare a student to delve into the current literature, and also a good reference for a researcher. A mathematician whose research or interest has come in contact with these topics would also find this a stimulating read on the subject. (MAA Reviews, April 7, 2020)

Preface.-
1. Topology of singular spaces: motivation, overview.-
2.
Intersection Homology: definition, properties.-
3. L-classes of stratified
spaces.-
4. Brief introduction to sheaf theory.-
5. Poincaré-Verdier
Duality.-
6. Intersection homology after Deligne.-
7. Constructibility in
algebraic geometry.-
8. Perverse sheaves.-
9. The Decomposition Package and
Applications.-
10. Hypersurface singularities. Nearby and vanishing cycles.-
11. Overview of Saito's mixed Hodge modules, and immediate applications.-
12.
Epilogue.- Bibliography.- Index.
Laureniu G. Maxim is Professor of Mathematics at University of WisconsinMadison and a Researcher at the Institute of Mathematics of the Romanian Academy. His research interests lie at the interface of geometric topology and algebraic geometry, with an emphasis on the topological study of complex algebraic varieties. He has taught courses on intersection homology, perverse sheaves and their applications to singularity theory in the United States, Romania, Mainland China, and Hong Kong SAR.